
A Proper Version of Synthesis-Based Sparse Audio Declipper
Pavel Záviška∗, Pavel Rajmic∗, Ondřej Mokrý∗ and Zdeněk Průša†

∗Signal Processing Laboratory, Brno University of Technology, Brno, Czech Republic
†Acoustic Research Institute, Austrian Academy of Science, Vienna, Austria

Objectives

The state of the art within the sparsity based
approaches to audio declipping has been achieved
by the SPADE algorithm by Kitić et. al. The
algorithm comes in synthesis and analysis variant,
but the respective problems solved by the two
variants do not correspond. We propose a new
synthesis variant that outperforms the old one in
terms of both the restoration quality and speed.

Introduction

Hard clipping as one of the most common audio sig-
nal degradations is modeled as

y[n] =
x[n] for |x[n]| < θc,

θc · sgn(x[n]) for |x[n]| ≥ θc,
(1)

where x ∈ RN is the original signal, y ∈ RN denotes
the clipped signal and θc represents the symmetrical
clipping threshold. The goal of declipping is to find
a suitable signal from the set Γ defined as
{x̃ |MRx̃ = MRy, MHx̃ ≥ θc, MLx̃ ≤ −θc}. (2)

An effective approach is to exploit the sparsity. One
thus seeks the “sparsest” signal x̂ from the set Γ.

SPADE

SPADE algorithms approximate the solution of the
non-convex inverse problems

arg min
x,z

‖z‖0 s.t. x ∈ Γ, ‖Ax− z‖2 ≤ ε, (3a)

arg min
x,z

‖z‖0 s.t. x ∈ Γ, ‖x−Dz‖2 ≤ ε, (3b)

where z ∈ CP are the signal coefficients with
A : RN → CP and D : CP → RN being the analysis
and synthesis operators respectively, where D = A∗

and DD∗ = A∗A = Id. Using the indicator func-
tions, the problems can be recast as

arg min
x,z

ιΓ(x)+ι`0≤k(z) s. t.


‖Ax− z‖2 ≤ ε,

‖x−Dz‖2 ≤ ε,
(4)

for sufficiently small sparsity k. The solution to (4)
is then approximated using the ADMM.

Proposed S-SPADE scheme

The ADMM solves the given problem by splitting
the minimization of the Augmented Lagrangian,
which is formed for the synthesis variant of (4) as
Lρ = ι`0≤k(z)+ιΓ(x)+ρ

2
‖Dz−x+u‖2

2−
ρ

2
‖u‖2

2. (5)
The minimization steps to be iterated are then

z(i+1) = arg min
‖z‖0≤k

‖Dz− x(i) + u(i)‖2
2, (6a)

x(i+1) = arg min
x∈Γ

‖Dz(i+1) − x + u(i)‖2
2, (6b)

together with the dual variable update
u(i+1) = u(i) + Dz(i+1) − x(i+1). (6c)

Note that the projection (6b) can be performed ex-
actly, whereas (6a) can be only approximated.

Original S-SPADE

Similarly, the original S-SPADE can be derived
based on the minimization of the Augmented La-
grangian. The non-consistency lies in the observa-
tion that the originally approximated problem is

arg min
w,z

‖z‖0 s.t. Dw ∈ Γ, ‖w− z‖2 ≤ ε (7)

instead of (3b), thus it does not correspond to the
analysis variant (3a) as the proposed version does.

Experiments

Experiments were performed on 5 diverse audio files
sampled at 16 kHz. All audio samples were pro-
cessed frame-wise using a Hann window 1024 sam-
ples long with a 75% overlap. The oversampled
DFT was used as the time-frequency transformation.
The relaxation parameters were set to r = 1, s = 1
and ε = 0.1.
The restoration quality was evaluated using ∆SDR,
which expresses the signal-to-distortion improve-
ment in dB, defined as

∆SDR = SDR(x, x̂)− SDR(x,y), (8)
where y represents the clipped signal, x is the orig-
inal undistorted signal and x̂ denotes the restored
signal. The SDR itself is computed as:

SDR(u,v) = 10 log ‖u‖2
2

‖u− v‖2
2

[dB]. (9)

For different redundancies of the oversampled DFT,
we compare A-SPADE, S-SPADE_O (the original)
and S-SPADE_DP (the proper version), see Fig. 1
for comparison in terms of restoration quality and
Fig. 2 for comparison in terms of the performance
speed.
The source codes for MATLAB are available at the
link in the QR-code below.

SPADE Algorithms

Alg. 1: A-SPADE original
Require: A,y,MR,MH,ML, s, r, ε

x̂(0) = y,u(0) = 0, i = 0, k = s

z̄(i+1) = Hk

(
Ax̂(i) + u(i)

)
x̂(i+1) = arg minx ‖Ax− z̄(i+1) + u(i)‖2

2
s.t. x ∈ Γ

if ‖Ax̂(i+1)− z̄(i+1)‖2 ≤ ε then
terminate

else
u(i+1) = u(i) + Ax̂(i+1) − z̄(i+1)

i← i + 1
if imod r = 0 then
k ← k + s

go to 2
return x̂ = x̂(i+1)

Alg. 2: S-SPADE original
Require: D,y,MR,MH,ML, s, r, ε

ẑ(0) = D∗y,u(0) = 0, i = 0, k = s

z̄(i+1) = Hk

(
ẑ(i) + u(i)

)
ẑ(i+1) = arg minz ‖z− z̄(i+1) + u(i)‖2

2
s.t. Dz ∈ Γ

if ‖ẑ(i+1) − z̄(i+1)‖2 ≤ ε then
terminate

else
u(i+1) = u(i) + ẑ(i+1) − z̄(i+1)

i← i + 1
if imod r = 0 then
k ← k + s

go to 2
return x̂ = Dẑ(i+1)

Alg. 3: S-SPADE proposed
Require: D,y,MR,MH,ML, s, r, ε

x̂(0) = y,u(0) = 0, i = 0, k = s

z̄(i+1) = Hk

(
D∗(x̂(i) − u(i))

)
x̂(i+1) = arg minx‖Dz̄(i+1)− x + u(i)‖2

2
s.t. x ∈ Γ

if ‖Dz̄(i+1)− x̂(i+1)‖2 ≤ ε then
terminate

else
u(i+1) = u(i) + Dz̄(i+1) − x̂(i+1)

i← i + 1
if imod r = 0 then
k ← k + s

go to 2
return x̂ = x̂(i+1)

Results

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.98
9

10
11
12
13
14
15
16
17
18

clipping threshold θc

∆
SD

R
[d
B]

SPADE, red = 1
A-SPADE, red = 2
S-SPADE_O, red = 2
S-SPADE_DP, red = 2
A-SPADE, red = 4
S-SPADE_O, red = 4
S-SPADE_DP, red = 4

Figure 1: Average performance in terms of ∆SDR for all three
algorithms. Notation “red” denotes redundancy of the DFT.

20 40 60 80 100 120 140 160 180 2000
1
2
3
4
5
6
7
8
9

10
11

number of iterations

∆
SD

R
[d
B]

SPADE, red = 1
A-SPADE, red = 2
S-SPADE_O, red = 2
S-SPADE_DP, red = 2
A-SPADE, red = 4
S-SPADE_O, red = 4
S-SPADE_DP, red = 4

Figure 2: Average ∆SDR versus the number of iterations.

Conclusion

A novel algorithm for audio declipping based on the
sparse synthesis model was introduced. Unlike orig-
inal S-SPADE, the proposed version indeed solves
the problem formulation (3b). The restoration per-
formance is significantly better than with the origi-
nal version of S-SPADE, and it is comparable with
the analysis variant. The experiments also show that
the new S-SPADE converges faster than A-SPADE.

