

Adversarial bandit for online interactive active learning of zero-shot spoken language understanding

Highlights

- SoA Recent speech understanding systems rely on machine learning algorithms to train their models from large amount of data. Remaining difficulties: cost and time of data annotating and model porting to new tasks and languages
- Novelty Zero-shot Semantic Parser, ZS learning method and semantic finite-state parser: combines an ontological description of the target domain and generic word embedding space for generalization
- Current work Online adaptive process: refines initial model with policy learnt using an Adversarial Bandit algorithm

Zero-Shot Semantic Parser

Semantic Features Space (F) based on word-embedding

- Continuous representation of word learnt with neural network
 Sum operator used for word chunks
- Defines a metric space for generalization
- Seed Semantic Knowledge (K)
- Domain-specific assignment table: task database + ontology of the domain
- Additional (reduced) dialogic knowledge

SLU Parsing

- K-NN classifier employed to attribute semantic hypotheses to every possible chunk of a test transcription
- Shortest-path estimated on the resulting chunks/semantic hypotheses graph

Experimental Study on DSTC2

Ontology: 16 dialogue act types, 8 slots and 215 values
Evaluation: F-score performance on the test set (9890 user utterances)
Online Adaptation: simulated from up to 740 transcribed training utterances

FORMATIQU

Online Interactive Refinement Problem

Action space

- 1. Skip: skip the refinement process.
- 2. YesNoQuestions: refine the model by considering yes/no user responses about the correctness of the detected DAs in the best semantic hypothesis.
- 3. AskAnnotation: ask the user to annotate the incoming utterance.
- Loss function

$$l(i) := \underbrace{\gamma d'(i)}_{\text{system improvement}} + \underbrace{(1 - \gamma) \frac{\phi(i)}{\phi_{max}}}_{\text{user effort}}$$

Extension to mixed strategies

$$\min_{\mathbf{p}\in\Delta(3)} E[l] = \sum_{i} p(i)l(i)$$

Adversarial Bandit environment

• System receives a user utterance and computes d_t ;

- System chooses an action i_t , possibly with the help of external randomization;
- Once action i_t is performed, the system computes:
- \rightarrow Inefficiency measure $d'_t(i_t)$ with the collaboration of the user;
- \rightarrow User effort $\phi_t(i_t)$, which is the exchange count between the system and the user to compute i_t ;
- \rightarrow Current loss is finally

 $l_t(i_t) = \gamma d'_t(i_t) + (1 - \gamma)\phi_t(i_t).$

Goal: Find i_1, i_2, \ldots , such that for each *T*, the system minimizes the total loss:

$$\sum_{t=1}^{T} l_t(i_t) = \gamma \sum_{t=1}^{T} d'_t(i_t) + (1-\gamma) \sum_{t=1}^{T} \phi_t(i_t)$$

Solution: Randomized forecaster Exp3

CONCLUSIONS

- Adversarial Bandit approach (and the use of the randomized forecaster Exp3) refines a zero-shot learning SLU, ZSSP
 → alleviate limited coverage of the domain specific semantics
 Efficient and practical way to formalise a trade-off between user supervision effort and system efficiency improvement
 Ongoing work:
 → integration in a live dialogue system with seed expert users
- → integration in a live dialogue system with second and user satisfaction)
 → study effect over overall dialogue progress (task completion and user satisfaction)
 → relation with the dialogue manager strategy learning