Yuliang Sun^{1,2} | Tai Fei¹ | Shangyin Gao¹ | Nils Pohl² ¹HELLA GmbH & Co. KGaA, Lippstadt, Germany | ²Ruhr University Bochum, Bochum, Germany

AUTOMATIC RADAR-BASED GESTURE **DETECTION VIA REGION-BASED DCNN**

Introduction

- 77 GHz FMCW radar for automatic gesture detection via a regionbased DCNN (R-DCNN).
- Micro-Doppler signatures and phase-difference information are

Motivation

- Robust under ambient light conditions and privacy-preserving reasons.
- In previous works, manually clipping the data streams is

Conclusion

- Automatic radar-based gesture detection based on R-DCNN.
- 95% (96%) average PPV (TPR) for nine gestures.

required.

exploited.

Front-End Signal Processing

Spectrogram Channel: \bullet

 $MD(q,k) = \sum_{k=0}^{\infty} |B(p,q,k)|.$

Phase-difference Channels:

$$PD^{(ij)}(q,k) = \sum_{p=0}^{N-1} |\Delta \varphi^{ij}(p,q,k)|,$$

where B(p,q,k) is the 3-D beat signal (range-Doppler-measurement-cycle) in Fourier domain, and $\Delta \varphi(p,q,k)$ is the phase-difference between two Rx.

Radar-Based Gesture Detector

- We followed the Faster R-CNN object detection network. \bullet
- The input layers consist of one spectrogram and two phase-difference channels. \bullet

Measurement Scenario

- An 77 GHz FMCW radar mounted in the roof console of a vehicle.
- 3 m detection range and 60° beam width. \bullet
- (9 gestures) x (19 subjects) x (10 times) = 1710 (total samples)
- 15 subjects as training set and 4 subjects \bullet as test set.

Detection Examples

RUHR

BOCHUM

UNIVERSITÄT

Experiment Results

- a) Approach steering wheel
- b) Rotate clockwise
- c) Rotate counter clockwise
- d) Swipe from bottle right to upper left
- e) Swipe down
- Swipe left **f**)
- g) Swipe right
- h) Swipe up
- Random motion **i**)

RUB

(a)	40	0	0	0	0	3	0	0	0	0.93	1
(b)	0	40	0	0	0	6	0	0	0	0.86	1
(c)	0	1	40	0	0	1	0	0	0	0.95	1
(d)	0	0	0	40	0	0	0	2	0	0.95	1
(e)	0	0	0	0	40	3	0	0	0	0.93	1
(f)	0	0	0	0	0	27	0	0	0	1	0.67
(g)	0	0	0	1	0	0	40	0	0	0.97	1
(h)	0	0	0	0	0	0	0	40	0	1	1
(i)	0	0	0	0	0	1	0	0	40	0.97	1
	Average									0.95	0.96