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 Many conditions, such as drop of electronics, crashing of vehicles, earthquakes, mechanical 
engineering, etc., could be subjected to high-g shock excitations. 

 To estimate the reliability of products under high-g shock conditions, high-g accelerometers 
are developed and widely used to measure shock responses.  

 However, accurately measuring high-g shock signals is challenging because of the high 
magnitude, short duration time and complicated nonlinear frequency spectrum. 

1. Introduction 
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 The base fixing on the object move at the same acceleration with the object. The 
piezoelectric element is subjected to the inertial force of the mass block. Alternating 
charges are generated on both surfaces of the piezoelectric element. The acceleration 
can be measured. 

 Existing work in shock measurement is mainly based on more reliable but expensive 
hardware, which leads to the high price of the high-end accelerometer. 

 Due to the intellectual protections, it is almost infeasible to improve the measuring 
capacity of the low-end accelerometer by upgrading its hardware directly. 

1. Introduction 

1

2

4

3

5 Structure of the  
Piezoelectric Accelerometer 
1. Shell 
2. Mass Block 
3. Piezoelectric Element 
4. Base 
5. Preloading Spring 
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1 

• Instead of ameliorating hardware, a purely data-driven approach is 
proposed with the help of deep learning.  

2 

• A pair of low-end accelerometer and high-end accelerometer as the 
ground truth is used to measure shock signals simultaneously. 

3 

• A dataset containing vast shock signals from both low-end and high-
end accelerometers is collected. 

4 

• A deep neural network is trained to learn the mapping between the 
shock signals from the low-end accelerometer and the high-end one. 

2. Research Programme 
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 Main branch: focus on calibrating the signal shape, because shock response spectrum 
is an important shock test index decided by the entire shock signal shape. 

 peak prediction network (PPN ) branch: focus on further calibrating the signal peak 
value, because the peak value of a shock signal is a very important index in JEDEC 
shock test of electronics.  
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2.3 Network Training 
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 Error metric: 

 Tab.1 Compare with other methods: 

Raw LPF LR AE Ours 

εp 
13.5% 48.8% 7.9% 6.9% 5.7% 

εs 
228.6 138.6 44.8 37.9 35.2 

 Tab.2 Ablation study: 

No 

concatenation 

No  𝑳∞ 

loss 

No 

ResNet 
Proposed 

9.7% 6.7% 6.3% 5.7% 
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 We establish the first dataset for industrial shock signal, which will facilitate 
the future research in the field of shock signal measurement. 

 We propose a novel network which is able to map shock signal to higher 
fidelity. Moreover, the designed network is able to correct both the whole 
time-domain shock signal and the peak value of the shock signal 
synchronously, making it both suitable for the shock response spectrum-
based shock test standard and the JEDEC drop test standard for electronics. 

 We show that data-driven approach is promising for measuring complicated 
shock signals at low cost, and the proposed method does not rely on the 
high repeatability of the low-end accelerometer. 

 With the advancement of automation technology, various industrial sensor 
signals can be collected at a larger scale easily. This idea can be easily 
extended to other similar signal processing fields like the calibration of 
temperature transducers, dynamic load sensors and acoustic sensors. 
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 “Repairing” faulty accelerometer 
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 Recovering shock signals measured from low-sampling-rate data acquisition card.   

Shock signal measured by low-sampling-rate DAC

The recovered shock signal

Shock signal measured by high-sampling-rate DAC
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 Data and model is available upon request. Any 
questions, please do not hesitate to contact us: 

 Email (Houpu Yao): hope-yao@asu.edu 
 Email (Jingjing Wen): wjj1990@mail.nwpu.edu.cn 
 Email (Yi Ren): yren32@asu.edu 
 Email (Bin Wu): wubin@nwpu.edu.cn 
 Email (Ze Ji): jiz1@cardiff.ac.uk 

mailto:hope-yao@asu.edu
mailto:hope-yao@asu.edu
mailto:hope-yao@asu.edu
mailto:wjj1990@mail.nwpu.edu.cn
mailto:yren32@asu.edu
mailto:wubin@nwpu.edu.cn
mailto:jiz1@cardiff.ac.uk

