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Contributions

• Complementarity selection criterion for dependent features
• Based on geometric mutual information (GMI)
• GMI estimated by single MST over all classes
• Computation and accuracy improvements demonstrated

Feature Selection

• A feature vector X = {X (1), X (2), . . . , X (d)}
• A multiclass label Y ∈ {c1, c2, . . . , cm}
• Approaches to feature selection

• PCA, PLS, SIR, SPARCS: linear response model

• SVM, CI, LASSSO: categorical response model

• Infromation divergence: empirical estimator [1]

• Mutual information: empirical estimator (!)

Geometric Mutual Information

Conditional joint distributions:

fij|Y = f (x(i), x(j)|y) (dep.)
πij|Y = f (x(i)|y)f (x(j)|y) (indep.) (1)

Marginal joint distributions:

fij =
∑
y

f (x(i), x(j)|y)p(y)

πij := π(X (i), X (j)) =
∑
y

pyf (x(i)|y)f (x(j)|y)
(2)

Henze-penrose divergence between f , g:

D(f ; g) = 1− 2
∫ fg

f + g
dµ (3)

Conditional GMI:

I(X (i);X (j)|Y ) = E
[
D(fij|Y ; πij|Y )

]
(4)

Marginal GMI:

I(X (i);X (j)) = D(fij; πij) (5)

Conditional vs Marginal GMI

The conditional GMI is bounded by marginal GMI:
Theorem 1 Consider conditional probability densities
f(x(i), x(j)|y), f(x(i)|y), and f(x(j)|y) with priors py y =
1, 2, . . . ,m. Then

I(X (i);X (j)|Y ) ≥ I(X (i);X (j)) (6 )

Complementarity feature selection criterion:

ρ(X (i)) =
∑
j 6=i

I(X (i), X (j))

Multiclass GMI Estimator

Given points from features (X (i), X (j)) with three labels:

Step 1

−→

Step 2

Step 3

−→

Step 4

Step 5

−→

Step 6

• Step 1: Split data in two equal sets

• Step 2: Shuffle points in the second set (triangles)

• Step 3: Merge all points in one single set

• Step 4: Construct minimal spanning tree (MST) over all

• Step 5: Remove non-dichotomous edges

• Step 6: Count dichotomous edges connecting each pair of
distinct labels

Estimation of Marginal GMI

Denote
• ni: # of points in the first set (circle) with label yi
• nj: # of points in the second set (triangle) with label yj

Theorem 2 For yi 6= yj, yi, yj ∈ {1, . . . ,m}, as nj →∞,
ni→∞, n→∞ such that nj/n→ pyj, ni/n→ pyi ,
(n = ni + nj) we have(

n

2 nj ni

)
Rzj,yi −→ D(fij; πij) (a.s.) (7 )

Numerical Experiments

• Samples drawn from one of the cases: N (µi, 0.1I).

µi =
[
µ cos

(
2π i
m

)
, µ sin

(
2π i
m

)]
, m = 2, 5, 10
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Observe:
• MSE decreases rapidly in sample size.
• As the number m of labels grow the MSE increases.

Computational complexity comparison:
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Note: For large number of classes proposed method has faster
runtime than Berisha et al’s method (Dp algorithm) [1].

Experiments on MNIST Dataset

• 70,000, 28×28 grey-scale images of hand-written digits 0 - 9.
• Training set = 60,000 and test set = 10,000.

Number of Features Algorithm Number of Training Sample
100 300 500

10 GMI 61.48 61.47 60.43
Dp 57.31 51.57 55.53

LSVC 20.00 5.99 8.40
ETC 10.69 6.00 7.09

15 GMI 70.01 69.94 66.48
Dp 64.86 69.90 71.71

LSVC 22.26 9.86 10.51
ETC 22.26 9.84 10.51

20 GMI 73.99 73.94 72.27
Dp 78.95 77.83 76.77

LSVC 22.4 9.92 13.42
ETC 24.67 9.93 12.77

Average classification accuracies of top features selected by
GMI, Linear Support Vector Classification (LSVC), Extra-Tree-
Classifier (ETC), and pairwise Dp statistic of Berisha et al [1].

• Accuracy of GMI feature selection outperforms others.
• Computational complexity of GMI is lower than pairwise Dp.
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