

Feature Selection for Multi-labeled Variables via Dependency Maximization

Contributions

- Complementarity selection criterion for dependent features
- Based on geometric mutual information (GMI)
- GMI estimated by single MST over all classes
- Computation and accuracy improvements demonstrated

Feature Selection

- A feature vector $\mathbf{X} = \{X^{(1)}, X^{(2)}, \dots, X^{(d)}\}$
- A multiclass label $Y \in \{c_1, c_2, \ldots, c_m\}$
- Approaches to feature selection
- PCA, PLS, SIR, SPARCS: linear response model
- SVM, CI, LASSSO: categorical response model
- Infromation divergence: empirical estimator [1]
- Mutual information: empirical estimator (!)

Geometric Mutual Information

Conditional joint distributions:

$$f_{ij|Y} = f(x^{(i)}, x^{(j)}|y) \qquad (\text{dep.}) \pi_{ij|Y} = f(x^{(i)}|y)f(x^{(j)}|y) \qquad (\text{indep.})$$
(1)

Marginal joint distributions:

$$f_{ij} = \sum_{y} f(x^{(i)}, x^{(j)} | y) p(y)$$

$$\pi_{ij} := \pi(X^{(i)}, X^{(j)}) = \sum_{y} p_y f(x^{(i)} | y) f(x^{(j)} | y)$$
 (2)

Henze-penrose divergence between f, g:

$$D(f;g) = 1 - 2 \int \frac{fg}{f+g} \,\mathrm{d}\mu \tag{3}$$

Conditional GMI:

$$I(X^{(i)}; X^{(j)}|Y) = \mathbb{E}\left[D(f_{ij|Y}; \pi_{ij|Y})\right]$$
(4)

Marginal GMI:

$$I(X^{(i)}; X^{(j)}) = D(f_{ij}; \pi_{ij})$$
(5)

Salimeh Yasaei Sekeh and Alfred O. Hero

ECE Department, University of Michigan, Ann Arbor

Conditional vs Marginal GMI

The conditional GMI is bounded by marginal GMI:

Theorem 1 Consider conditional probability densities $f(x^{(i)}, x^{(j)}|y)$, $f(x^{(i)}|y)$, and $f(x^{(j)}|y)$ with priors p_y y =1, 2, ..., m. Then

> $I(X^{(i)}; X^{(j)}|Y) \ge I(X^{(i)}; X^{(j)})$ (6)

Complementarity feature selection criterion:

$$\rho(X^{(i)}) = \sum_{j \neq i} I(X^{(i)}, X^{(j)})$$

Multiclass GMI Estimator

Given points from features $(X^{(i)}, X^{(j)})$ with three labels:

- **Step 1**: Split data in two equal sets
- Step 2: Shuffle points in the second set (triangles)
- **Step 3**: Merge all points in one single set
- Step 4: Construct minimal spanning tree (MST) over all
- **Step 5**: Remove non-dichotomous edges
- **Step 6**: Count dichotomous edges connecting each pair of distinct labels

Estimation of Marginal GMI

Denote

• n_i : # of points in the first set (circle) with label y_i • n_i : # of points in the second set (triangle) with label y_i

Theorem 2 For $y_i \neq y_j$, $y_i, y_j \in \{1, \ldots, m\}$, as $n_j \rightarrow \infty$, $n_i \to \infty, n \to \infty$ such that $n_i/n \to p_{y_i}, n_i/n \to p_{y_i}$, $(n = n_i + n_j)$ we have

$$\left(\frac{n}{2 n_j n_i}\right) \Re_{z_j, y_i} \longrightarrow D(f_{ij}; \pi_{ij}) \quad (a.s.) \tag{7}$$

Numerical Experiments

• Samples drawn from one of the cases: $\mathcal{N}(\mu_i, 0.1I)$.

 $\mu_i = \left[\mu \cos\left(2\pi \frac{i}{m}\right), \mu \sin\left(2\pi \frac{i}{m}\right)\right], \quad m = 2, 5, 10$

Sample Size

0.004

0.003

0.002

Observe:

• MSE decreases rapidly in sample size. • As the number m of labels grow the MSE increases.

Computational complexity comparison:

Note: For large number of classes proposed method has faster runtime than Berisha et al's method (Dp algorithm) [1].

This work was partially supported by ARO under grant W911NF-15-1-0479 and USAF under grant FA8650-15-D-1845.

[1] V. Berisha, A. Wisler, A. Hero, and A. Spanias, Empirically estimable classification bounds based on a nonparametric divergence measure, IEEE Trans. on Signal Process. vol. 64, no. 3, pp. 580-591, 2016. [2] S. Yasaei Sekeh and A. O. Hero, Feature Selection for Multi-labeled Variables via Dependency Maximization, arXiv:1902.03544.

UNIVERSITY OF MICHIGAN

Experiments on MNIST Dataset

• 70,000, 28×28 grey-scale images of hand-written digits 0 - 9. • Training set = 60,000 and test set = 10,000.

Number of Features	Algorithm	Number	of Trainin	ig Sample
		100	300	500
10	GMI	61.48	61.47	60.43
	Dp	57.31	51.57	55.53
	LSVC	20.00	5.99	8.40
	ETC	10.69	6.00	7.09
15	GMI	70.01	69.94	66.48
	Dp	64.86	69.90	71.71
	LSVC	22.26	9.86	10.51
	ETC	22.26	9.84	10.51
20	GMI	73.99	73.94	72.27
	Dp	78.95	77.83	76.77
	LSVC	22.4	9.92	13.42
	ETC	24.67	9.93	12.77

Average classification accuracies of top features selected by GMI, Linear Support Vector Classification (LSVC), Extra-Tree-Classifier (ETC), and pairwise Dp statistic of Berisha et al [1].

• Accuracy of GMI feature selection outperforms others. • Computational complexity of GMI is lower than pairwise Dp.

Acknowledgments

References