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Motivation and Objectives

e Many iImage retrieval systems:
- Adopt bag-of-visual-words model
- Usually based on matching of local descriptors (SIFT)
- Not distinctive enough, often lead to false matches

e Accurate image retrieval by seeing the big picture:
- FInd appropriate regions for providing contextual clues ==t
- Enhance the similarity score for true-matching SIFT pairs &

Matching Regions Estimation Binarized Fisher Vector
Decompose the image into regions based on ~ -- An easy way to measure region similarity
spatial pyramid: Fisher vector: A global representation of an image by aggregating SIFTs

Binary version: From Euclidian space Iin to Hamming space.

Input: Image | (width W and height H) Then each region is described by a 128-bit signature The function changes

Output: L layers of regions. In the | —th layer,

there are n; xn regions with size VSV—IXSﬂI (m,n) =arg r:ujn n(bs (|O| )0 (py)) p, < T IDJ = 7Dy

We set L = 4 with 0.08

(F:12,13,14) = (1.2,3,5) Ennhance the Matching Score | | o mat
(51,52.53,54) = (1.0,1.5,2.0,3.0) Denote: df =h(bs (pX).bs(pY)  £. [\
Each image | has 39 region proposals, every = The similarity enhancing function: Em

keypoint(SIFT) x is located in T, regions score' (X, ) = score(X, y) x (1+ exp(— df5/6’5)) bt T\ |

Hamming Distance

For a pre-matching pair (x, y) (with score(X, y)
based on Hamming embedding [1]),
the corresponding regional feature sets are:

PX — { ptx 1=1 ""TX} Py = { pty 1=1 ,,,,Ty} Table 2. Image retrieval results for different methods. We inte-

Experimental Results
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grate all these methods and show the accuracy in the last row.
In order to find an appropriate region pair to Methods Holidays OxfordSk Paris  Oxford105k - “| /*\*\,\H1 7
provide discriminative contextual clues: HE 7710 6925 6837 5685  &n / T
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Table 3. Performance comparison with state-of-the-art methods without post-processing. * denotes the case where 128-bit SIFT
X
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Inary signature 1s used.
Methods ~ Ours  Ours*  [27 [31] 13 221 [30] 291 (18]  [26]*  [28]
Holida 8277 8427 821 819 811 826 8192 787 . 81.0 .
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Buy your ticket
on the bus I
22¢€ valid 2 days  ®

Oxford5k 7860 8124 780 704 725 647 6501 778 7117 804 813
Paris 7582 TILI8  75.6 - - - - 14.1 - 10 T3
Oxford105k  73.88 7533 728 - 0.2 - - 129 6234 150

Time: generating binary FV (0.05s), query the Oxford105k (0.23s)

The reglons(deplcted by solid yellow rectangle)
are used for the next similarity enhancing step.

[1] H. Jegou et al., “Improving Bag-of-Features for Large Scale Image Search”, IJCV, 2010.
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