

THE UNIVERSITY of EDINBURGH

Introduction

- For speech recognition, one output label is often related to a small span of input frames.
- The input frames and the output labels usually follow a monotonic left-toright order.
- The usual attention mechanisms consider all the input frames and do not guarantee monotonic alignment.
- To address this, rule-based sliding window methods restrict attention mechanisms attend inputs within a large window. But they often have inferior results.
- We propose a fully-trainable windowed attention mechanism. It has advantages in both efficiency and accuracy.

The window shift and window size

The window shift is estimated by an MLP:

$$s_i = N \cdot \sigma(\text{MLP}(q_i))$$

- q_i : the decoder hidden state at time step *i*. N : the maximum allowed step size; set as a hyperparameter.
- The window size D_i is learned in the same manner by a separate MLP.

The Gaussian location score

$$l_{ij} = \begin{cases} \exp\left(-\frac{(j-m_i)^2}{2(D_{jl})^2}\right), m_i - D_{jl} \leq j < m_i \\ \exp\left(-\frac{(j-m_i)^2}{2(D_{jr})^2}\right), m_i \leq j < m_i + D_{jr} \end{cases}$$

• m_i is a function of the window shifts:

$$m_i = m_{i-1} + s_i$$

- *j* is the index of the encoder hidden state. D_{jl} and D_{jr} are the left window size and the right window size. The window can be asymmetric if they are learned by two separate MLPs.
- It encourage high scores around the window centre.

Windowed Attention Mechanisms for Speech Recognition

Shucong Zhang, Erfan Loweimi, Peter Bell, Steve Renals Centre for Speech Technology Research, University of Edinburgh, Edinburgh, UK

The sigmoid location score

$$l_{ij} = \begin{cases} \sigma(k(j-m_i)+b), m_i-b, \\ \sigma(k(m_i-j)+b), m_i \leq c \end{cases}$$

- The hyperparameter k and b are chosen to make the location score almost uniformly distributed within the window.
- The propose of this score function is to make the window shift trainable.
- It does not provide any information except the window location.

Fully-trainable windowed attention

- The location score makes the window fully-trainable and it provides location information to the attention mechanism.
- We also use content-based attention to compute a content score e_{ii}.
- The final attention score is the product of the location score and the content score:

$$\alpha_{ij} = \frac{\exp(e_{ij}) \cdot l_{ij}}{\sum_{k=m_i-D_{jl}}^{m_i+D_{jr}} \exp(e_{ik}) \cdot l_{ik}}$$

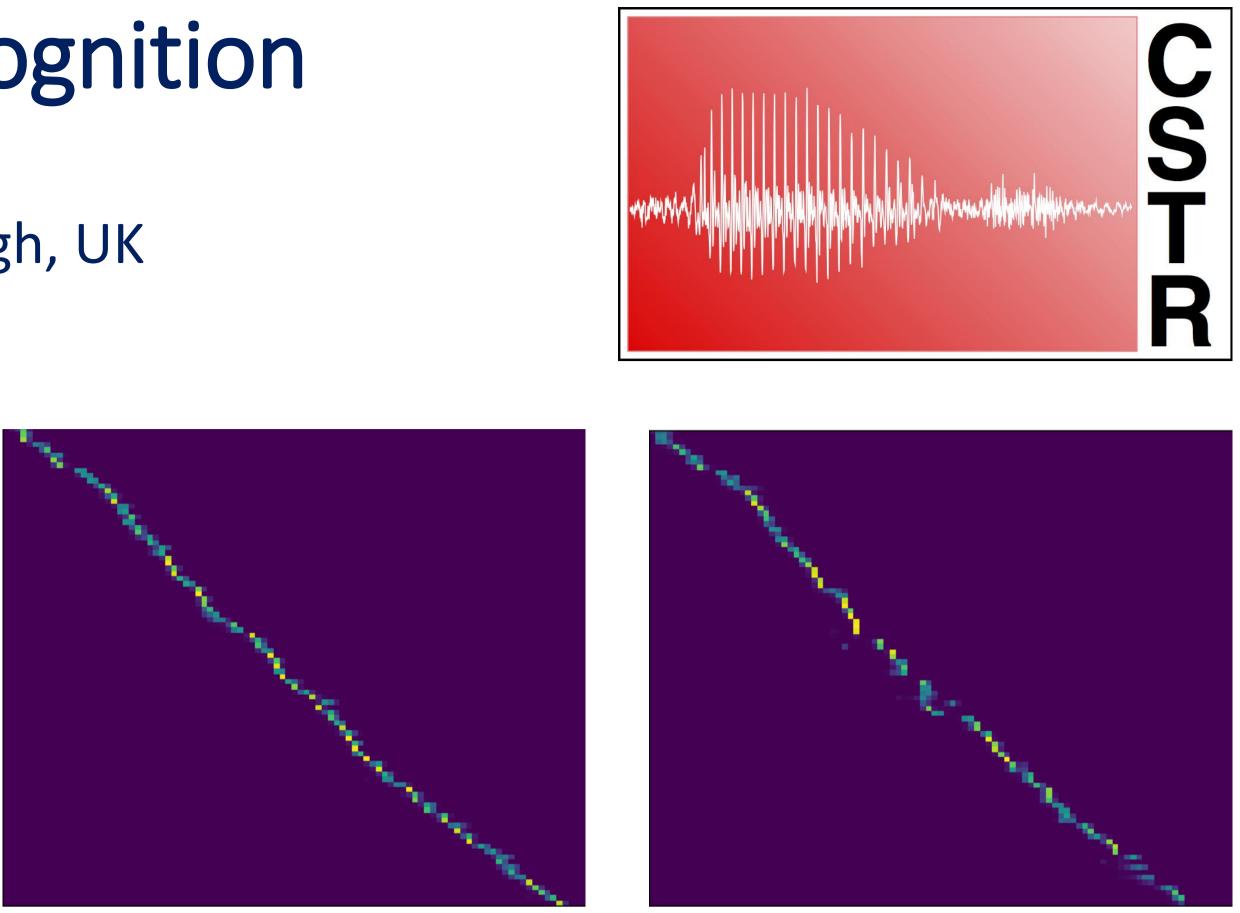
Experimental Results

Function Type	N, D_l, D_r	PER (TIMIT Test)
Baseline: content-based attention		20.1%
Gaussian- Fixed length window	5, 3, 3 5, 4, 2 5, 2, 4	17.0% 17.3% 17.3%
Gaussian-one window MLP Gaussian-two window MLP	5, 12, 12 4, 6, 6	16.8% 16.7%
sigmoid(±1.5x + 3) sigmoid(±1.5x + 7) sigmoid(±1.5x + 7)	5, 4, 4 5, 4, 4 5, 7, 7	17.8% 23.4% 19.1%

Table 1: Phone error rate on TIMIT test set. N, D_l , D_r denote the maximum allowed step size, left window size and right window size. One unit of the step/window size is 0.04s.

$$< m_i$$

 $D_{jl} \leq j < m_i$ $j < m_i + D_{jr}$



and the sigmoid location function (right).

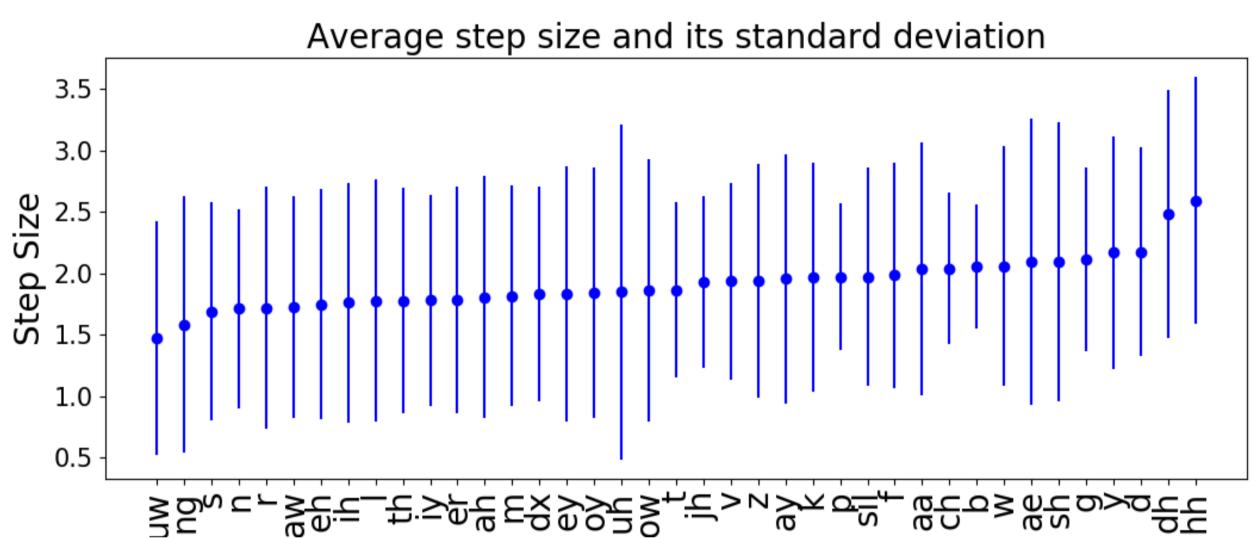


Figure 2: The average learned step size for each phoneme and its standard deviation. The data is collected on TIMIT development set and test set.

Model (Train)	CER(Dev)	CER (Test)
train_si284 eval92	dev93	eval92
Baseline: content-based attention location-based attention	11.1% 9.6%	8.9% 6.9%
Gaussian-two window MLP	9.0%	6.5%
CTC-attention CTC-Gaussian	7.7% 7.8%	5.9% 5.8%
train_si284 subset (30K)	dev93	eval92
location-based attention	9.9%	7.9%
Gaussian-two window MLP	9.5%	7.2%
CTC-attention	9.1%	6.9%
train_si284 subset (15K)	dev93	eval92
location-based attention	15.7%	13.7%
Gaussian- two window MLP	13.2%	9.6%
CTC-attention	10.8%	8.3%

Table 2: Character error rates on WSJ. The max step/window size is 1.32s. However, the learned step/window sizes are small except the silence parts.

Figure 1: Attention vectors generated by the Gaussian location function (left)