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Introduction

The sigmoid location score

" For speech recognition, one output label is often related to a small span of
input frames. [
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" The input frames and the output labels usually follow a monotonic left-to-

right order. » The hyperparameter k and b are chosen to make the location score almost
uniformly distributed within the window.

" The usual attention mechanisms consider all the input frames and do not

uarantee monotonic alignment. . : R : : : . . . . .
& & The propose of this score function is to make the window shift trainable. Figure 1: Attention vectors generated by the Gaussian location function (left)
and the sigmoid location function (right).

" To address this, rule-based sliding window methods restrict attention -
mechanisms attend inputs within a large window. But they often have
inferior results.

It does not provide any information except the window location.
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= We propose a fully-trainable windowed attention mechanism. It has Fu"y-tralnable WlndOWEd attention 3.0 -
advantages in both efficiency and accuracy. PTE |
* The location score makes the window fully-trainable and it provides n - Llllesdes
. . . . location information to the attention mechanism. ) LLiLodbdesetetetttttTITT0T
The window shift and window size A 15|}t
" We also use content-based attention to compute a content score ;. 1.0 -
* The window shift is estimated by an MLP: 0.5
= The final attention score is the product of the location score and the '%'?},g;%%éés_;ﬁgééﬁgggggﬁﬂé‘gﬁ#E_S_ﬁg’%ﬁﬁ%ﬁ%g
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] - the decoder hidden state at ti fon i Figure 2: The average learned step size for each phoneme and its standard
di- e =COCET NIGUEN State at time Step 1. _ exp(ei]') ' li]' deviation. The data is collected on TIMIT development set and test set.
N : the maximum allowed step size; set as a hyperparameter. Ajj = m+D;,
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* The window size D; is learned in the same manner by a separate MLP. Model (Train) o HOEY CER (Test)
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The Gaussian location score Experimental Results Baseline: content-based attention ~ 11.1% 8.9%
location-based attention 9.6% 6.9%
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exp ( = |, m; — Djp<j<m Baseline: content-based attention 20.1% CTC-attention 7.7% 2.9%
o 2(Dj1) CTC-Gaussian 7.8% 5.8%
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exXp 7 |, My =] <m;+ Dj, 5,4, 2 17.3%
2(Djr) 5,2,4 17.3% location-based attention 9.9% 7.9%
, . . . Gaussian-one window MLP 5,12,12 16.8% Gaussian-two window MLP 9.5% 7.2%
" m; is a function of the window shifts: Gaussian-two window MLP 46, 6 16.7% CTC-attention 9.1% 6.9%
m:=m +9 sigmoid(21.5x + 3) >, 4,4 17.8% train_si284 subset (15K) eval92
l -1 l S!ng!C Eii‘gx * ;; 2' ;l' ;l igiz’ location-based attention 15.7% 13.7%
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= jistheindex of the encoder hidden state. D;; and Dj,- are the left window Gaussian- two window MLP 13.2% 9.6%
size and the right window size. The window can be asymmetric if they are CTC-attention 10.8% 8.3%
learned by two separate MLPs. Table 1: Phone error rate on TIMIT test set. N, D; , D,- denote the maximum
allowed step size, left window size and right window size. One unit of the Table 2: Character error rates on WSJ. The max step/window size is 1.32s.

= |t encourage high scores around the window centre. step/window size is 0.04s. However, the learned step/window sizes are small except the silence parts.



