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* Humans understand speech not only by % <%>ﬁﬂ‘ﬂja ﬁ " at tth decoding step i Broadcast TV news audio-visual data, 100
listening but also by considering visual cues e e it A i |y - 5 g s 5 speakers, 150 hours of training set and 42

hours of test set
 Add Gaussian noise to audio
* 71 fbank features extracted every 10ms
* Lip region resize to 64x80
* Audio encoder: 4 BLSTM with 256 cells
* Video encoder: 10CNN + 2 BLSTM
* Decoder: 1 LSTM with 512 cells

;"d [ el j [ rese e ] * Output units: 6784 Chinese characters, 26
T ) 1 English characters, SOS, EOS, UNK
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of lips and faces.

* Audio-visual speech recognition (AVSR) is
thought to be one of the most promising
solutions for robust speech recognition in
noisy conditions.

* End-to-end approaches, e.g. CTC, LAS, RNN-T
show promising results in ASR.

* Watch, listen, attend and spell (WLAS)
propose a framework to fuse information
from audio and video.

* Contribution: using additional modality
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WLAS (Chung et al. 2017)
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attention to learn fused representation of
audio and video in sequence-to-sequence

Modality Attention (this work) [ Results

architectures for AVSR.
* Experiments show relative improvement
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Table 2. CER for different model at different
SNR video encoder

from 2% to 36% over auditory modality alone AV AI| n Ster 4 et al. 2018 ) ) clean | 10dB | 5dB | 0dB

are obtained depending on different SNR, g ( p ) { Modallty Attention for AVSR } LAS 7.08 | 1033 | 12.93 | 18.65
which is better than feature concatenation WAS 44.62

methods. { ’ i } . : : : WLAS 7.00 [ 9.07 [ 10.23 | 12.34

Modality Attention Encoders: audio encoder & video encoder AVl B T

[ Attention based Encoder Decoder } * Scoring function over each modality feature * Attenders: compute context vector c{ for MD_ATT 695 [ 854 [ 9.87 [ 11.93

audio and c{ for video at each decoding step MD_ATTMC || 685 | 8.12 | 9.74 | 13.65

* Encoder/listener: extract higher level = Z(fm ) ,
acoustic representation. * Modality attender: attend over ¢y and ¢} to

* Decoder/speller: RNN net for predicting the get merged vector ¢
output units.

Table 3. Attention weights of MD_ATT MC for

audio and video
test SNR

* Softmax operation over modality scores at time t

attention weights

* Output: ¢V is used for generating output

exp(zt")

* Attender: compute context vector using at = — a® a”
encoder output and decoder states for the 2= ezp(#) clean | 0.641 | 0.359
decoder to output next unit » Weighted sum on modality feature for fused | | 150dd1§3 8'223 8'3%
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