MODALITY ATTENTION FOR END-TO-END AUDIO-VISUAL SPEECH RECOGNITION Pan Zhou¹, Wenwen Yang², Wei Chen², Yanfeng Wang², Jia Jia¹ ¹Department of Computer Science and Technology, Tsinghua University, China ²Voice Interaction Technology Center, Sogou Inc., Beijing, China

Introduction

- Humans understand speech not only by listening but also by considering visual cues of lips and faces.
- Audio-visual speech recognition (AVSR) is thought to be one of the most promising solutions for robust speech recognition in noisy conditions.
- End-to-end approaches, e.g. CTC, LAS, RNN-T show promising results in ASR.
- Watch, listen, attend and spell (WLAS) propose a framework to fuse information from audio and video.
- **Contribution:** using additional modality attention to learn fused representation of audio and video in sequence-to-sequence architectures for AVSR.
- Experiments show relative improvement from 2% to 36% over auditory modality alone are obtained depending on different SNR, which is better than feature concatenation methods.

Attention based Encoder Decoder

- Encoder/listener: extract higher level acoustic representation.
- Decoder/speller: RNN net for predicting the output units.
- Attender: compute context vector using encoder output and decoder states for the decoder to output next unit

$$egin{aligned} m{h} &= Encoder(m{x})\ s_i &= DecoderRNN(s_{i-1},y_{i-1},c_{i-1})\ e_{i,u} &= Energy(s_i,h_u) = V^Ttanh(W_hh_u+W_ss_i+b)\ lpha_{i,u} &= rac{exp(e_{i,u})}{\sum_{u'}exp(e_{i,u'})}\ c_i &= \sum_u lpha_{i,u}h_u\ P(y_i | m{x},y_{< i}) = DecoderOut(s_i,c_i) \end{aligned}$$

CNN layer	operation	output size
0	Resize	Tx3x64x80
1-2	Conv-Selu-Conv-Selu-MP-BN	Tx32x32x40
3-4	Conv-Selu-Conv-Selu-MP-BN	Tx48x16x20
5-6	Conv-Selu-Conv-Selu-MP-BN	Tx72x8x10
7-8	Conv-Selu-Conv-Selu-MP-BN	Tx108x4x5
9-10	Conv-Selu-Conv-Selu-MP-BN	Tx128x2x2
11-12	BLSTM-BLSTM	Tx512

Experimental Setup					
 Broadcast TV news audio-visual data, 100 speakers, 150 hours of training set and 42 hours of test set Add Gaussian noise to audio 71 fbank features extracted every 10ms Lip region resize to 64x80 Audio encoder: 4 BLSTM with 256 cells Video encoder: 10CNN + 2 BLSTM Decoder: 1 LSTM with 512 cells Output units: 6784 Chinese characters, 26 					
Results					
Table 2. CER for different model at different SNR video encoder					
		clean	10dB	5dB	0dB
	LAS	7.08	10.33	12.93	18.65
	WAS	44.62			
	WLAS	7.00	9.07	10.23	12.34

Table 3. Attention weights of MD_ATT_MC for audio and video

10.89

8.54

8.12

7.6

6.95

6.85

AV_align

MD_ATT

MD_ATT_MC

13.69 | 19.21

11.93

13.65

9.87

9.74

test SNR	attention weights		
	α^a	α^v	
clean	0.641	0.359	
10dB	0.633	0.367	
5dB	0.624	0.376	
0dB	0.607	0.393	

Table 4. Recognition results for comparison

Lab:	不少城市气温连创入冬以来新低	是新疆的风光和美食	与此同时韩国多个市民
LAS:	不少城市气温连创录中以来袭击	新疆的相关关系	与平时韩国政府不明
WAS:	不少人是因为他传 <mark>入冬</mark> 冬的拉 <mark>心地</mark>	人心在的 <mark>疯狂和美石</mark>	对此同时韩国多个市民
MD_ATT:	不少城市气温连创 <mark>入冬</mark> 以来 <mark>新低</mark>	是新疆的 <mark>风光和美食</mark>	与 <mark>此同</mark> 时韩国 <mark>多个自民</mark>