

1. Introduction

- Monte Carlo (MC) methods and variational inference (VI) are the two main approaches used to approximate Bayesian posterior distributions.
- Each approach has its own challenges:
 - MC scalability to complex systems.
 - VI accuracy of the variational approximation.
- **Goal**: To apply robust techniques in stochastic optimization to scale adaptive importance sampling (AIS) methods for inference in high-dimensional probabilistic models.

2. Problem Formulation

• Given a set of i.i.d. observations $\mathbf{y}_1, \ldots, \mathbf{y}_N \sim p(\mathbf{y}|\mathbf{x})$, where each $\mathbf{y}_i \in \mathbb{R}^{d_y}$, we would like find the posterior probability of **x** given the observations:

$$\pi(\mathbf{x}) \equiv p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{x})p(\mathbf{x})}{p(\mathbf{y})} \propto \tilde{\pi}(\mathbf{x}) \equiv p(\mathbf{y}|\mathbf{x})$$

• The normalizing constant $p(\mathbf{y})$ is unknown and can be estimated using importance sampling:

$$\hat{Z}_{IS} = \frac{1}{M} \sum_{m=1}^{M} \frac{\tilde{\pi}(\mathbf{x}^{(m)})}{q(\mathbf{x}^{(m)}; \boldsymbol{\theta})}, \quad \mathbf{x}^{(m)} \sim q(\mathbf{x}; \boldsymbol{\theta}).$$

• We want to learn the best proposal, $q(\mathbf{x}; \boldsymbol{\theta})$, by minimizing the variance of \hat{Z}_{IS} with respect to the parameters θ .

3. Algorithm Summary

A Variational Adaptive Population Importance Sampler Yousef El-Laham, Petar M. Djurić, Mónica F. Bugallo

Department of Electrical & Computer Engineering Stony Brook University, Stony Brook, NY, USA

4. Proposed Methodology

- The optimization problem we would like to solve is: $\boldsymbol{\theta}^* = \arg\min C(\boldsymbol{\theta})$
- For example, $C(\theta)$ could be chosen as to minimize a monotonic transformation of the Rényi divergence:

$$C(\boldsymbol{\theta}) = \int_{-\infty}^{\infty} \pi(\mathbf{x})^{\alpha} q(\mathbf{x}; \boldsymbol{\theta})^{1-\alpha} d\mathbf{x}, \quad \alpha > 1$$

• The gradient of $C(\theta)$ is given as:

$$\nabla_{\boldsymbol{\theta}} C(\boldsymbol{\theta}) = -\mathbb{E}_q \left[\left(\frac{\tilde{\pi}(\mathbf{x})}{q(\mathbf{x};\boldsymbol{\theta})} \right)^{\alpha} \nabla_{\boldsymbol{\theta}} \left(\log q(\mathbf{x};\boldsymbol{\theta}) \right) \right]$$

• Consider that $q(\mathbf{x}; \boldsymbol{\theta}) = \sum_{k=1}^{\kappa} \rho_k q_k(\mathbf{x}; \boldsymbol{\theta}_k)$, where ρ_k and $\boldsymbol{\theta}_k$ denote the weight and parameters of the *k*th mixand. Then, the gradient of $C(\theta)$ with respect to θ_k is given by:

$$\nabla_{\boldsymbol{\theta}_k} C(\boldsymbol{\theta}) = -\mathbb{E}_q \left[\left(\frac{\tilde{\pi}(\mathbf{x})}{q(\mathbf{x};\boldsymbol{\theta})} \right)^d \right]$$

• If there exists a function $\Psi(\mathbf{x}, \boldsymbol{\theta}_k)$ such that $\nabla_{\boldsymbol{\theta}_k}(q(\mathbf{x};\boldsymbol{\theta})) = \rho_k q_k(\mathbf{x};\boldsymbol{\theta}_k)$

then the gradient $\nabla_{\theta_k} C(\theta)$ can alternatively be written as:

$$\nabla_{\boldsymbol{\theta}_{k}} C(\boldsymbol{\theta}) = -\rho_{k} \mathbb{E}_{q_{k}} \left[\left(\frac{\tilde{\pi}(\mathbf{x})}{q(\mathbf{x};\boldsymbol{\theta})} \right)^{\alpha} \Psi(\mathbf{x},\boldsymbol{\theta}_{k}) \right]$$
(1)

Proposition: Let $q_k(\mathbf{x}; \boldsymbol{\theta}_k)$ be a member of the exponential family of probability distributions. Then, $\Psi(\mathbf{x}, \boldsymbol{\theta}_k)$ exists and is given by

$$\Psi(\mathbf{x},\boldsymbol{\theta}_k) = \nabla_{\boldsymbol{\theta}_k} (\boldsymbol{\beta}(\boldsymbol{\theta}_k)^{\mathsf{T}} \mathbf{T}$$

where $\beta(\theta_k)$, $\mathbf{T}(\mathbf{x})$ and $A(\theta_k)$ are known functions. Then, the gradient $\nabla_{\theta_k} C(\theta)$ can be expressed according to (1).

<u>Example</u>: Location parameters of a Gaussian mixture for AIS Let $q(\mathbf{x}; \boldsymbol{\theta}_t) = \frac{1}{K} \sum_{k=1}^{K} \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_{tk}, \boldsymbol{\Sigma}_k)$. We derive an expression for the stochastic gradient $g(\mu_{t,k}) \approx \nabla_{\mu_{t,k}} C(\theta_t)$ as follows: $\tilde{g}(\boldsymbol{\mu}_{t,k}) = -\frac{\boldsymbol{\Sigma}_{k}^{-1}}{KN} \sum_{n=1}^{N} \left(\frac{\tilde{\pi}(\mathbf{x}_{t,k}^{(n)})}{q(\mathbf{x}_{t,k}^{(n)};\boldsymbol{\mu}_{t},\boldsymbol{\Sigma})} \right)^{\alpha} (\mathbf{x}_{t,k}^{(n)} - \boldsymbol{\mu}_{t,k}), \quad (2)$ where $\mathbf{x}_{t,k}^{(n)} \sim \mathcal{N}(\boldsymbol{\mu}_{t,k}, \boldsymbol{\Sigma}_{k})$ for $n = 1, \dots, N$. Choosing $\alpha = 2$ minimizes the variance of \hat{Z}_{IS} .

$$\tilde{g}(\boldsymbol{\mu}_{t,k}) = -\frac{\boldsymbol{\Sigma}_{k}^{-1}}{KN} \sum_{n=1}^{N} \left(\frac{\pi(\mathbf{x}_{t,k})}{q(\mathbf{x}_{t,k})} \right)$$

 $\mathbf{x})p(\mathbf{x}).$

$$\frac{\nabla_{\boldsymbol{\theta}_k}(q(\mathbf{x};\boldsymbol{\theta}))}{q(\mathbf{x};\boldsymbol{\theta})}$$

$$\Psi(\mathbf{x}, \boldsymbol{\theta}_k),$$

 $\Gamma(\mathbf{x}) - A(\boldsymbol{\theta}_k)),$

						_						
σ^2	2	4	6	8	10]	σ^2	2	4	6	8	10
M-PMC	27.90	27.91	27.65	27.77	27.67		M-PMC	496.2	480.3	500.6	419.3	415.6
DM-PMC	7.06	9.05	13.90	16.99	19.90		DM-PMC	483.5	457.9	659.2	552.4	631.7
APIS	1.58	3.52	9.20	14.13	18.76		APIS	134.4	195.9	472.2	563.9	563.3
VAPIS	0.05	0.04	0.18	0.23	0.84		VAPIS	21.1	21.8	55.9	42.8	84.3
Table 1: MSE in the estimation of $\mathbb{E}_{\pi}[\mathbf{x}]$.						-	Table 2:	MSE	in the	estima	tion of	fZ.

• Initial and final proposal of the APIS method:

- deterministic mixture sampling.

5. Simulations

• Our goal is to approximate the following target in \mathbb{R}^{20} :

 $\pi(\mathbf{x}) \propto \tilde{\pi}(\mathbf{x}) = \sum_{j=1}^{S} \tilde{\rho}_j \mathcal{N}(\mathbf{x}; \mathbf{m}_j, \mathbf{\Lambda}_j)$

• **Goal**: Estimate the normalizing constant $Z = \sum_{j=1}^{5} \tilde{\rho}_{j}$ and the target mean $\mathbb{E}_{\pi}[\mathbf{x}] = \frac{1}{Z} \sum_{j=1}^{5} \tilde{\rho}_{j} m_{j}$.

• We used our method to adapt the location parameters of a mixture of Gaussians as in (2). We set $\Sigma_k = \sigma^2 \mathbb{I}_{20}$.

• Initial and final proposal of the proposed method:

6. Conclusions

• We proposed a novel adaptation scheme for AIS samplers that explicitly optimizes a mixture's parameters by means of

• The results of the numerical experiment showed that the proposed method outperforms other AIS samplers when dealing with high-dimensional target distributions.