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1. Introduction J [ 4. Proposed Methodology 5. Simulations

* Monte Carlo (MC) methods and variational inference (VI) are * The optimization problem we would like to solve is: * Our goal is to approximate the following target in R%":
the two main approaches used to approximate Bayesian 0* = argmin C(0) 3 >
posterior distributions. 0cC 7T(x) o 7T(x) = ZP]'N(X? m;, Aj)

* Each approach has its own challenges: » For example, C(0) could be chosen as to minimize a J=1

* MC —scalability to complex systems. monotonic transformation of the Rényi divergence: * Goal: Estimate the normalizing constant Z = 2]5:1 0;and the
* VI - accuracy of the variational approximation. 00 1 target mean E[x] = » 2]5:1 ojm;.

* Goal: To apply robust techniques in stochastic optimization C(0) = / T(x)%q(x;0)" ""dx, a>1 * We used our method to adapt the location parameters of a
to scale adaptive importance sampling (AIS) methods for - mixture of Gaussians as in (2). We set I, = 21
inference in high-dimensional probabilistic models. » The gradient of C(0) is given as:
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2. Problem Formulation VoC(6) = —E, (;{'(5)) Vo (logq(x; 0)) T Tor T oot T on e T osn| | D] sess 505 | e0s |74 e
/ APIS 1.58 | 352 | 920 | 14.13 | 18.76 APIS 134.4 | 1959 | 472.2 | 563.9 | 563.3

i ) VAPIS | 0.05 | 0.04 | 018 | 0.23 [ 0.84 VAPIS || 21.1 [ 21.8 | 559 | 42.8 | 84.3

* Given a set gf i.1.d. observiatlogs VAVERRRD 4\ oy p(y|x), Wh?fe » Consider that4(x;0) = Eszl Oxqk (X; Ok ), where prand 6y Table 1: MSE in the estimation of E[x]. Table 2: MSE in the estimation of Z.

each yi € R, we Wf)lﬂd like find the posterior probability of denote the weight and parameters of the kth mixand. Then,
x given the observations: (y1x)p(x) the gradient of C(0) with respect to 6y is given by: * Initial and final proposal of the APIS method:
_ _ PYX)PX) o\ — L i
t(x) = p(x|y) = ) 7t(x) = p(y[x)p(x). Vo C(0) = _E ( 7t (x) )0& Vo, (9(x;0)) —— —

* The normalizing constant p(y) is unknown and can be ' "[\4q(x;6) g(x;0)
estimated using importance sampling; * If there exists a function ¥(x, 6; ) such that Ny |

= — ~ q(x; 0,(7(x;0)) = piqi(x; 6x)F (x, Ok),
Z1s M mgl 7(x): 0)” X q(x; 0). k

then the gradient Vg C(6)can alternatively be written as: i T i e e
- We want to learn the best proposal, 4(x; 8), by minimizing T R

the variance of Z 1s with respect to the parameters 6. Ve _

~

- X
| 7t(x
C(0) = —pEq, ( ( ( (3)) F(x, 0k) (1)
L\ gXs : * Initial and final proposal of the proposed method:

3. Algorithm Summar
5 y Proposition: Let qi(x; 0y) be a member of the exponential

family of probability distributions. Then, Y (x, 0 ) exists and
1S given by 4

&S Target
Proposal

Draw N samples from K proposal distributions,

(H) HZL...,N,
Xppe ~ k(6 0kk), 1,.... K.
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¥(x,0;) = Vo, (B(6r) ' T(x) — A(6)),

where B(06y), T(x) and A(6y) are known functions. Then,
the gradient Vg C(0) can be expressed according to (1).

Compute the deterministic mixture weights,

ﬂ(xg;?) n=1,...,N,

" k=1,...,K
%E}Ic(:l ‘?k(xg}?}et,k)

Example: Location parameters of a Gaussian mixture for AIS :
» Letg(x;0;) = % Z,Ile N (x; # 1 2k )- We derive an expression 6. Conclusions
for the stochastic gradient g(u, ;) ~ V,, C(6;) as follows:

Weighting

* We proposed a novel adaptation scheme for AIS samplers

2| Fork=1,..., K . 1 N ~ (1 X .. . . )

cl. e _ L : 3 X 7T (Xt,k ) (n) that explicitly optimizes a mixture’s parameters by means of
< : %orgptutehthe Sthhaftlc gradlient §(O1). 6 S(Hex) = KN Zl ( (x(n)° r) (xt,k —Hei) (2) deterministic mixture sampling.

o M- YPUae the vector of proposal parameters by i, h ) Af g_ ’ L Lk ’1” t’ N * The results of the numerical experiment showed that the

2 0 1k =1le(0:x — 17:8(01 1)) WHETE Xk ™ (P Zi) forn=1,..., N proposed method outperforms other AIS samplers when

* Choosing @ = 2 minimizes the variance of /. dealing with high-dimensional target distributions.



