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Background:

▪ Identify speech with similar emotional content

▪ Can a deep neural network learn to determine 

distance between expressive behaviors?

▪ Can a given emotional descriptor facilitate this 

task?

▪ How well can a computer perform this task?

Our Work:

▪ Preference learning using triplet loss functions

▪ Compare emotional descriptors for this task:

▪ Emotional attributes versus categorical emotions 

▪ Compare results with human performance

▪ Emotional corpus collected at UT-Dallas

▪ Multiple sentences from speakers appearing in various 

podcasts  (2.75s – 11s)

▪ Annotated on Amazon Mechanical Turk 

▪ VAD: Valence, arousal and dominance (Euclidean distance)

▪ Primary emotions: anger, sadness, happiness, fear, surprise, 

disgust, contempt, neutral state and other (KL divergence)

▪ One triplets per sample within a given partition

▪ Evaluating emotional similarity is better in the VAD 

space than in the categorical space

▪ Triplets with expressive anchors are easier to 

discriminate than triplets with neutral anchors

▪ Model performance is similar to human performance 

and superior in some regions of the VAD space

Future Work

▪ Improve accuracy for triplets with anchors in the middle 

of the VAD space

▪ Collect more perceptual evaluation data

▪ Perform similar study on data from one subject to learn 

that subject’s emotional expression in depth

Global Performance

Acoustic Features

Network Structure

▪ Interspeech 2013 Computational Paralinguistic Challenge set (6,373D)

▪ calculated from low-level descriptors

▪ Trained, validated, tested on speaker independent sets

▪ 3 hidden layers, 1,024 nodes, ReLU activation

▪ 512 dimension embedding

▪ Dropout 0.2, batch normalization, 15 epochs

▪ 19,238 training triplets
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Loss Function

Desired Mapping

▪ Results per percentile used to get negative sample

▪ VAD provides better representation for this task

▪ VAD results in terms of location of anchor

▪ Extreme VAD regions lead to better performance

Human Performance (VAD)

▪ Perceptual evaluation

▪ 60 triplets (5 regions in VAD)

▪ Model performs better in 90%

▪ Humans perform better in 40%
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Region Entire Test Set 60 Triplets 60 Triplets

90th Percentile 90th Percentile 90th Percentile

1 76.5% 82% 86.7%

2 74.5% 96%* 73.3%

3 89.8% 98%* 82.2%

4 83.5% 74% 66.7%

5 64.0% 65% 75.3%

40th Percentile 40th Percentile 40th Percentile

1 66.7% 64% 75.6%

2 66.0% 64% 80.0%*

3 78.8% 78% 65.6%

4 65.5% 66% 57.8%

5 56.6% 49% 60.0%*
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