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Introduction Paper and Presentation Contents

Paper and Presentation Contents

Powerful approaches to decrease computational complexity:
1. Set estimation theory
2. Partial-Update strategy

Proposed algorithms in this paper:
Set-Membership Partial-Update Affine Projection (SM-PUAP)
Improved Set-Membership Partial-Update Affine Projection (I-SM-PUAP)
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Introduction Set Estimation Theory & Partial-Update Strategy

Set Estimation Theory

Finds a solution to a given optimization problem −→ Any solution within the
feasible set is acceptable

Examples of estimators:
Batch processing: few techniques (usually too complex)
Iterative processing: optimal-bounding-ellipsoids (OBE) and set-membership (SM)
algorithms

Partial-Update Strategy

At each iteration of the algorithm, only part of the filter coefficients are updated

Examples of PU strategy:
Partial-Update Least-Mean-Square Algorithm
Partial-Update Normalized LMS Algorithm
Partial-Update Affine Projection Algorithm
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Set-Membership Filtering (SMF) Concept

Formulation

Main Sets

Constraint set:

H(k) ,
{

w ∈ R
N : |d(k) − w

T
x(k)| ≤ γ

}

where
Error: e(k) , d(k) − w

T
x(k)

Uncertainties are modeled via γ

Feasibility set:

Θ ,
⋂

k∈N

H(k)

Problem Formulation

Inputs: all data-pairs (x(k), d(k))

Target: find w ∈ Θ
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Set-Membership Filtering (SMF) Concept

Challenges

Incomplete data
Impossible to guarantee that all input data-pairs are available
Online/iterative processing:

Must produce an estimate every time a new input data-pair arrives
Θ can be iteratively estimated via ψ(k)

ψ(k) ,

k
⋂

i=0

H(i)

ψ(k) converges to Θ as k → ∞
Problem: k → ∞ −→ Infinite memory and prohibitive complexity
Solution: Use a finite number of constraint sets at each iteration −→ SM affine
projection algorithms
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Set-Membership Partial-Update Affine Projection (SM-PUAP) AlgorithmSM-PU Algorithms

SM-PU Algorithms: Overview

Inputs (general case):
current data-pair (x(k), d(k)), i.e., H(k)
L previous data-pairs, i.e., L previous constraint sets

SM-PUAP Algorithm

Inputs: L last data-pairs −→ data is stacked sequentially

X(k) , [x(k) x(k − 1) · · · x(k − L+ 1)] ∈ R
N×L

d(k) , [d(k) d(k − 1) · · · d(k − L + 1)]T ∈ R
L

At each iteration we have the estimator

ψSM−PUAP(k) ,

k
⋂

i=k−L+1

H(i)

At each iteration we update the coefficients determined by an index set

IM (k) = {i1(k), · · · , iM (k)} ⊂ {1, · · · , N}
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SM-PUAP Algorithm: Question

At each iteration k we generate w(k + 1) ∈ ψSM−PUAP(k)

We would like to have w(k + 1) ∈ ψ(k) → Θ, as k → ∞

Question: How to combine the elements of the sequence {w(0),w(1), . . . ,w(k)}
to generate w(k + 1) ∈ ψ(k)?

We may focus on the transition of iterations and then expand the idea

At iteration k − 1 −→ w(k) ∈ ψSM−PUAP(k − 1) = H(k − L)
⋂

(

k−1
⋂

i=k−L+1

H(i)

)

At iteration k −→ w(k + 1) ∈ ψSM−PUAP(k) = H(k)
⋂

(

k−1
⋂

i=k−L+1

H(i)

)

Answer:
Change coefficients as little as possible: min ‖w(k + 1) − w(k)‖2

2
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SM-PUAP Algorithm: Optimization Problem

Problem:

min ‖w(k + 1) − w(k)‖2
2

s.t. w(k + 1) ∈ ψSM−PUAP(k)

C̃IM (k)[w(k + 1) − w(k)] = 0

Solution:

w(k + 1) =

{

w(k) + CIM (k)X(k)P(k) [e(k) − γ(k)] if |e0(k)| > γ,

w(k) otherwise,

where

P(k) ,
[

X
T (k)CIM (k)X(k) + δI

]−1
∈ R

L×L

e(k) = [e0(k) e1(k) · · · eL−1(k)]T ∈ R
L

γ(k) = [γ0(k) γ1(k) · · · γL−1(k)]T ∈ R
L
, with |γi(k)| ≤ γ
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Improved Set-Membership Partial-Update Affine Projection(I-SM-PUAP) AlgorithmI-SM-PUAP Algorithm

Why I-SM-PUAP instead of SM-PUAP?

Drawback of SM-PUAP algorithm
Decrease the convergence speed by increasing ‖w(k + 1) − w(k)‖2

2

Suggestions to address the drawback
Decrease the error bound γ but causes more updates and high computational
complexity
Control the increment of ‖w(k + 1) − w(k)‖2

2

Figure: Projection in partial-update algorithm
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I-SM-PUAP Algorithm

How to control the increment of ‖w(k + 1) − w(k)‖2
2?

Project w(k) ,with the same direction as SM-PUAP update, on a sphere centered at
w(k) whose radius is the minimum of distances between the w(k) and its
perpendicular projections on surfaces d(k) − w

T
x(k) = ±γ

Figure: Projection in improved partial-update algorithm

15 / 21



Improved Set-Membership Partial-Update Affine Projection(I-SM-PUAP) AlgorithmI-SM-PUAP Algorithm

I-SM-PUAP Update Equation

Intersect the segment w(k) ˆw(k) and the sphere S(k) we get

w(k + 1) =

{

w(k) + µ(k)
‖a(k)‖2

a(k) if |e0(k)| > γ,

w(k) otherwise,

where

a(k) , CIM (k)X(k)
[

X
T (k)CIM (k)X(k) + δI

]−1
e(k) ∈ R

N

µ(k) , min
(

| − e0(k) ± γ|

‖x(k)‖2

)

∈ R+

e(k) = [e0(k) e1(k) · · · eL−1(k)]T ∈ R
L
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Results Simulations

Simulations

Learning (MSE) curves for SM-PUAP and I-SM-PUAP algorithms
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Figure: Learning curve for SM-PUAP and I-SM-PUAP algorithms, N = 80
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Results Simulations

Update Rate

Input N L SM-PUAP

N (0, 1) 80 65 25%

N (0, 1) 80 70 14%

Input N L I-SM-PUAP

N (0, 1) 80 2 8.3%

N (0, 1) 80 5 6.5%

N (0, 1) 80 70 2%

4th-AR 80 2 20%

Summary of observations for I-SM-PUAP vs. SM-PUAP

I-SM-PUAP algorithm has lower MSE

I-SM-PUAP algorithm has faster convergence rate

I-SM-PUAP algorithm has lower computational complexity

I-SM-PUAP algorithm has lower update rate

19 / 21



Conclusions

Outline

1 Introduction

2 Set-Membership Filtering (SMF)

3 Set-Membership Partial-Update Affine Projection (SM-PUAP) Algorithm

4 Improved Set-Membership Partial-Update Affine Projection(I-SM-PUAP) Algorithm

5 Results

6 Conclusions

20 / 21



Conclusions

Conclusions

In this presentation:
Revisited set estimation theory with emphasis on set-membership filtering
Revisited set-membership partial-update affine projection algorithm
Presented improved set-membership partial-update affine projection algorithm

Thank You!
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