Improved Set-Membership Partial-Update Affine Projection Algorithm

Paulo S.R. Diniz¹ Hamed Yazdanpanah¹

¹Laboratório de Sinais, Multimídia e Telecomunicações (SMT) Departamento de Engenharia Eletrônica e de Computação (DEL) Universidade Federal do Rio de Janeiro (UFRJ)

diniz@smt.ufrj.br, hamed.yazdanpanah@smt.ufrj.br

International Conference on Acoustics, Speech and Signal Processing (ICASSP 2016)

1 Introduction

- Set-Membership Filtering (SMF)
- 8 Set-Membership Partial-Update Affine Projection (SM-PUAP) Algorithm
- Improved Set-Membership Partial-Update Affine Projection(I-SM-PUAP) Algorithm
- 6 Results

Introduction

- 2 Set-Membership Filtering (SMF)
- 8 Set-Membership Partial-Update Affine Projection (SM-PUAP) Algorithm

Improved Set-Membership Partial-Update Affine Projection(I-SM-PUAP) Algorithm

💿 Results

Paper and Presentation Contents

- Powerful approaches to decrease computational complexity:
 - 1. Set estimation theory
 - 2. Partial-Update strategy
- Proposed algorithms in this paper:
 - Set-Membership Partial-Update Affine Projection (SM-PUAP)
 - Improved Set-Membership Partial-Update Affine Projection (I-SM-PUAP)

Paper and Presentation Contents

- Powerful approaches to decrease computational complexity:
 - 1. Set estimation theory
 - 2. Partial-Update strategy
- Proposed algorithms in this paper:
 - Set-Membership Partial-Update Affine Projection (SM-PUAP)
 - Improved Set-Membership Partial-Update Affine Projection (I-SM-PUAP)

Set Estimation Theory

- Finds a solution to a given optimization problem \longrightarrow Any solution within the feasible set is acceptable
- Examples of estimators:
 - Batch processing: few techniques (usually too complex)
 - Iterative processing: optimal-bounding-ellipsoids (OBE) and set-membership (SM) algorithms

Partial-Update Strategy

- At each iteration of the algorithm, only part of the filter coefficients are updated
- Examples of PU strategy:
 - Partial-Update Least-Mean-Square Algorithm
 - Partial-Update Normalized LMS Algorithm
 - Partial-Update Affine Projection Algorithm

Set Estimation Theory

- \bullet Finds a solution to a given optimization problem \longrightarrow Any solution within the feasible set is acceptable
- Examples of estimators:
 - Batch processing: few techniques (usually too complex)
 - Iterative processing: optimal-bounding-ellipsoids (OBE) and set-membership (SM) algorithms

Partial-Update Strategy

- At each iteration of the algorithm, only part of the filter coefficients are updated
- Examples of PU strategy:
 - Partial-Update Least-Mean-Square Algorithm
 - Partial-Update Normalized LMS Algorithm
 - Partial-Update Affine Projection Algorithm

2 Set-Membership Filtering (SMF)

⁽³⁾ Set-Membership Partial-Update Affine Projection (SM-PUAP) Algorithm

Improved Set-Membership Partial-Update Affine Projection(I-SM-PUAP) Algorithm

6 Results

Formulation

Main Sets

• Constraint set:

$$\mathcal{H}(k) \triangleq \left\{ \mathbf{w} \in \mathbb{R}^N : |d(k) - \mathbf{w}^T \mathbf{x}(k)| \le \overline{\gamma} \right\}$$

where

- Error: $e(k) \triangleq d(k) \mathbf{w}^T \mathbf{x}(k)$
- Uncertainties are modeled via $\overline{\gamma}$
- Feasibility set:

$$\Theta \triangleq \bigcap_{k \in \mathbb{N}} \mathcal{H}(k)$$

Problem Formulation

- Inputs: all data-pairs $(\mathbf{x}(k), d(k))$
- Target: find $\mathbf{w} \in \Theta$

Challenges

• Incomplete data

- Impossible to guarantee that all input data-pairs are available
- Online/iterative processing:
 - Must produce an estimate every time a new input data-pair arrives
 - Θ can be iteratively estimated via $\psi(k)$

$$\psi(k) \triangleq \bigcap_{i=0}^k \mathcal{H}(i)$$

- $\psi(k)$ converges to Θ as $k \to \infty$
- Problem: $k \to \infty \longrightarrow$ Infinite memory and prohibitive complexity
- $\bullet\,$ Solution: Use a finite number of constraint sets at each iteration \longrightarrow SM affine projection algorithms

Challenges

• Incomplete data

- Impossible to guarantee that all input data-pairs are available
- Online/iterative processing:
 - Must produce an estimate every time a new input data-pair arrives
 - Θ can be iteratively estimated via $\psi(k)$

$$\psi(k) \triangleq \bigcap_{i=0}^k \mathcal{H}(i)$$

- $\psi(k)$ converges to Θ as $k \to \infty$
- Problem: $k \to \infty \longrightarrow$ Infinite memory and prohibitive complexity
- $\bullet\,$ Solution: Use a finite number of constraint sets at each iteration \longrightarrow SM affine projection algorithms

- 1 Introduction
- 2 Set-Membership Filtering (SMF)

8 Set-Membership Partial-Update Affine Projection (SM-PUAP) Algorithm

Improved Set-Membership Partial-Update Affine Projection(I-SM-PUAP) Algorithm

SM-PU Algorithms: Overview

- Inputs (general case):
 - current data-pair $(\mathbf{x}(k), d(k))$, i.e., $\mathcal{H}(k)$
 - $\bullet~L$ previous data-pairs, i.e., L previous constraint sets

SM-PUAP Algorithm

• Inputs: L last data-pairs \longrightarrow data is stacked sequentially

$$\mathbf{X}(k) \triangleq [\mathbf{x}(k) \ \mathbf{x}(k-1) \ \cdots \ \mathbf{x}(k-L+1)] \in \mathbb{R}^{N \times I}$$
$$\mathbf{d}(k) \triangleq [d(k) \ d(k-1) \ \cdots \ d(k-L+1)]^T \in \mathbb{R}^L$$

• At each iteration we have the estimator

$$\psi_{\mathrm{SM-PUAP}}(k) \triangleq \bigcap_{i=k-L+1}^{k} \mathcal{H}(i)$$

• At each iteration we update the coefficients determined by an index set

$$\mathcal{I}_M(k) = \{i_1(k), \cdots, i_M(k)\} \subset \{1, \cdots, N\}$$

SM-PUAP Algorithm: Question

- At each iteration k we generate $\mathbf{w}(k+1) \in \psi_{\text{SM}-\text{PUAP}}(k)$
- We would like to have $\mathbf{w}(k+1) \in \psi(k) \to \Theta$, as $k \to \infty$
- Question: How to combine the elements of the sequence $\{\mathbf{w}(0), \mathbf{w}(1), \dots, \mathbf{w}(k)\}$ to generate $\mathbf{w}(k+1) \in \psi(k)$?
 - We may focus on the transition of iterations and then expand the idea $\binom{k-1}{k-1}$

• At iteration
$$k - 1 \longrightarrow \mathbf{w}(k) \in \psi_{\text{SM-PUAP}}(k - 1) = \mathcal{H}(k - L) \bigcap \left(\bigcap \mathcal{H}(i) \right)$$

• At iteration
$$k \longrightarrow \mathbf{w}(k+1) \in \psi_{\mathrm{SM-PUAP}}(k) = \mathcal{H}(k) \bigcap \left(\bigcap_{i=k-L+1}^{k-1} \mathcal{H}(i) \right)$$

- Answer:
 - Change coefficients as little as possible: $\min \|\mathbf{w}(k+1) \mathbf{w}(k)\|_2^2$

SM-PUAP Algorithm: Optimization Problem

• Problem:

$$\begin{aligned} \min & \|\mathbf{w}(k+1) - \mathbf{w}(k)\|_2^2 \\ \text{s.t.} & \mathbf{w}(k+1) \in \psi_{\text{SM-PUAP}}(k) \\ & \tilde{C}_{\mathcal{I}_M(k)}[\mathbf{w}(k+1) - \mathbf{w}(k)] = 0 \end{aligned}$$

• Solution:

$$\mathbf{w}(k+1) = \begin{cases} \mathbf{w}(k) + C_{\mathcal{I}_M(k)} \mathbf{X}(k) \mathbf{P}(k) \left[\mathbf{e}(k) - \boldsymbol{\gamma}(k) \right] & \text{if } |e_0(k)| > \overline{\boldsymbol{\gamma}}, \\ \mathbf{w}(k) & \text{otherwise,} \end{cases}$$

where

$$\mathbf{P}(k) \triangleq \left[\mathbf{X}^{T}(k) C_{\mathcal{I}_{M}(k)} \mathbf{X}(k) + \delta \mathbf{I} \right]^{-1} \in \mathbb{R}^{L \times L}$$
$$\mathbf{e}(k) = \left[e_{0}(k) \ e_{1}(k) \ \cdots \ e_{L-1}(k) \right]^{T} \in \mathbb{R}^{L}$$
$$\gamma(k) = \left[\gamma_{0}(k) \ \gamma_{1}(k) \ \cdots \ \gamma_{L-1}(k) \right]^{T} \in \mathbb{R}^{L}, \text{ with } |\gamma_{i}(k)| \leq \overline{\gamma}$$

- 1 Introduction
- 2 Set-Membership Filtering (SMF)
- 3 Set-Membership Partial-Update Affine Projection (SM-PUAP) Algorithm

Improved Set-Membership Partial-Update Affine Projection(I-SM-PUAP) Algorithm

💿 Results

Why I-SM-PUAP instead of SM-PUAP?

- Drawback of SM-PUAP algorithm
 - Decrease the convergence speed by increasing $\|\mathbf{w}(k+1) \mathbf{w}(k)\|_2^2$
- Suggestions to address the drawback
 - Decrease the error bound $\overline{\gamma}$ but causes more updates and high computational complexity
 - Control the increment of $\|\mathbf{w}(k+1) \mathbf{w}(k)\|_2^2$

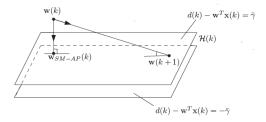


Figure: Projection in partial-update algorithm

I-SM-PUAP Algorithm

How to control the increment of $\|\mathbf{w}(k+1) - \mathbf{w}(k)\|_2^2$?

Project $\mathbf{w}(k)$, with the same direction as SM-PUAP update, on a sphere centered at $\mathbf{w}(k)$ whose radius is the minimum of distances between the $\mathbf{w}(k)$ and its perpendicular projections on surfaces $d(k) - \mathbf{w}^T \mathbf{x}(k) = \pm \overline{\gamma}$

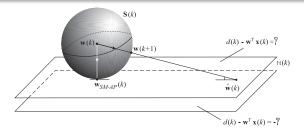


Figure: Projection in improved partial-update algorithm

I-SM-PUAP Update Equation

Intersect the segment $\mathbf{w}(k) \hat{\mathbf{w}(k)}$ and the sphere S(k) we get

$$\mathbf{w}(k+1) = \begin{cases} \mathbf{w}(k) + \frac{\mu(k)}{\|\mathbf{a}(k)\|_2} \mathbf{a}(k) & \text{if } |e_0(k)| > \overline{\gamma}, \\ \mathbf{w}(k) & \text{otherwise,} \end{cases}$$

where

$$\mathbf{a}(k) \triangleq C_{\mathcal{I}_M(k)} \mathbf{X}(k) \left[\mathbf{X}^T(k) C_{\mathcal{I}_M(k)} \mathbf{X}(k) + \delta \mathbf{I} \right]^{-1} \mathbf{e}(k) \in \mathbb{R}^N$$
$$\mu(k) \triangleq \min\left(\frac{|-e_0(k) \pm \overline{\gamma}|}{\|\mathbf{x}(k)\|_2} \right) \in \mathbb{R}_+$$
$$\mathbf{e}(k) = \left[e_0(k) \ e_1(k) \ \cdots \ e_{L-1}(k) \right]^T \in \mathbb{R}^L$$

1 Introduction

- 2 Set-Membership Filtering (SMF)
- 8 Set-Membership Partial-Update Affine Projection (SM-PUAP) Algorithm

Improved Set-Membership Partial-Update Affine Projection(I-SM-PUAP) Algorithm

6 Results

Simulations

• Learning (MSE) curves for SM-PUAP and I-SM-PUAP algorithms

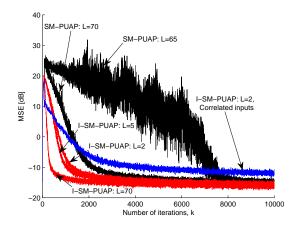


Figure: Learning curve for SM-PUAP and I-SM-PUAP algorithms, N = 80

Results Simulations

Update Rate

	Input	Ν	L	SM-PUAP
۹	$\mathcal{N}(0,1)$	80	65	25%
	$\mathcal{N}(0,1)$	80	70	14%

	Input	Ν	L	I-SM-PUAP
	$\mathcal{N}(0,1)$	80	2	8.3%
۹	$\mathcal{N}(0,1)$	80	5	6.5%
	$\mathcal{N}(0,1)$	80	70	2%
	4th-AR	80	2	20%

Summary of observations for I-SM-PUAP vs. SM-PUAP

- I-SM-PUAP algorithm has lower MSE
- I-SM-PUAP algorithm has faster convergence rate
- I-SM-PUAP algorithm has lower computational complexity
- I-SM-PUAP algorithm has lower update rate

- 1 Introduction
- 2 Set-Membership Filtering (SMF)
- 3 Set-Membership Partial-Update Affine Projection (SM-PUAP) Algorithm
- Improved Set-Membership Partial-Update Affine Projection(I-SM-PUAP) Algorithm
- 6 Results

Conclusions

- In this presentation:
 - Revisited set estimation theory with emphasis on set-membership filtering
 - Revisited set-membership partial-update affine projection algorithm
 - Presented improved set-membership partial-update affine projection algorithm

Thank You!

