Role Specific Lattice Rescoring for Speaker Role Recognition from Speech Recognition Outputs

Nikolaos Flemotomos¹, Panayiotis Georgiou¹, David C. Atkins², Shrikanth Narayanan¹

¹Signal Analysis and Interpretation Lab (SAIL), University of Southern California ²Department of Psychiatry and Behavioral Sciences, University of Washington

USCUniversity of Southern California

Problem & Motivation

► Definition of SRR: map every speaker turn to some speaker role

► Examples:

- ► Business meetings (CEO, Graphics Designer, HR Specialist, etc)
- Broadcast news programs (Anchor, Presenter, Guest, etc)
- Psychotherapy (Therapist, Patient)
- Typically exploit linguistic features after ASR
 - **Problem**: Generic ASR system leads to information loss
 - **Solution**: Build role-specific ASR systems

Method: Turn-level SRR

Method: Speaker-level SRR

- First, apply speaker clustering
- Define the costs $c(S_i|R_j) \triangleq \sum_{x \in T_i} c_j(x)$
 - T_i the set of turns corresponding to the speaker S_i

AlgorithmSpeaker-level SRR given costs for each (speaker,role)Inputs:speakers S_1, S_2, \dots, S_N
roles R_1, R_2, \dots, R_N
 $costs <math>c(S_i|R_j) \forall i, j$ $\tilde{S} \leftarrow \{S_i\}_{i=1}^N; \quad \tilde{R} \leftarrow \{R_i\}_{i=1}^N$
while $\tilde{S} \neq \phi$ do
for $S_i \in \tilde{S}$ do
 $l_i \leftarrow \arg\min_m c(S_i|R_m), \ R_m \in \tilde{R}$

- ► Build a backround LM G and N role-specific LMs $\mathcal{R}_1, \mathcal{R}_2, \cdots, \mathcal{R}_N$ corresponding to the N roles
- ► Interpolate the LMs to recognize the same vocabulary

► Typical approach:


```
C_{i} \leftarrow \min_{n} |c(S_{i}|R_{l_{i}}) - c(S_{i}|R_{n})|, R_{n} \in \tilde{R} \setminus \{R_{l_{i}}\}
end for
k \leftarrow \arg\max_{i} C_{i}
assign R_{l_{k}} to S_{k}
\tilde{S} \leftarrow \tilde{S} \setminus \{S_{k}\}; \tilde{R} \leftarrow \tilde{R} \setminus \{R_{l_{k}}\}
end while
```

Datasets

- PSYCH: dyadic interactions in psychotherapy Therapist (49.0h) vs. Client (43.0h)
- AMI: business meetings Project Manager (22.9h), Marketing Expert (15.3h), User Interface Designer (13.8h), Industrial Designer (15.2h)

Results

► Turn-level SRR: Misclassification Rate

	rescoring	no rescoring	majority class
PSYCH	23.58	10.75	50.67
AMI	64.70	63.40	62.22

Speaker-level SRR: Misclassification Rate

Proposed approach:

 $c_j(x)$: LM-cost of the best path in the lattice $\mathcal{L}_{\mathcal{R}_i^+}(x)$

	rescoring	no rescoring	clustering (BIC-HAC)		
PSYCH[†]	0.00	7.46			
PSYCH	4.41	5.83	4.08		
AMI [†]	29.46	55.52			
AMI	46.16	60.94	15.63		
† denotes oracle speaker clustering					

► Effect on speech recognition: WER

	rescoring, turn-level	rescoring, speaker-level	generic
PSYCH	37.84	37.54	37.99
AMI	29.35	29.27	29.29

Conclusion

- ► short speech segments: insufficient observations to infer speaker role ⇒ speaker-level SRR
- even small role-specific improvements in the text (small decrease in WER) can be of high value for SRR
- future work:

time-dependent speaker roles or multiple speakers with the same role

flemotom@usc.edu

May 15, 2019

Work supported by the NIH, NSF, and DoD.