

Attentive Filtering Networks for Audio Replay Attack Detection Cheng-I Lai^{1,2}, Alberto Abad^{1,3}, Korin Richmond¹, Junichi Yamagishi^{1,4}, Najim Dehak², Simon King¹

Research Problem & Our Objectives

Problem

Automatic speaker verification (ASV) systems are susceptible to malicious spoofing attacks, especially those in the form of audio replay.

(Left) An example of audio replay attack [1]. The left phone (black color) is a smart phone with a voice-unlock function for user authentication; the right phone (white color) replays a pre-recorded speech sample to unlock the left phone.

Objectives

- Advance previous anti-spoofing research on DNN based system, and
- 2. Develop a system that automatically acquires and enhances discriminative features in both the time and frequency domain.

ASVspoof 2017 Version 2.0

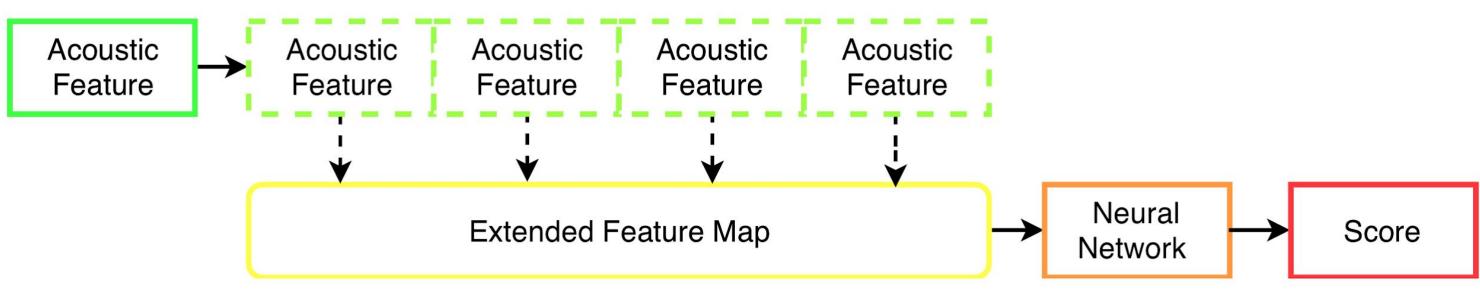
The ASVspoof 2017 corpus is a collection of *bona fide* and *spoofed* utterances. Bona fide utterances are a subset of the *RedDots* corpus, while the spoofed utterances are the result of replaying and recording bona fide utterances using a variety of heterogeneous devices and acoustic environments [2].

Subset	# Spk	# Replay	# Replay	#Utterances	
		sessions	Config	Bona fide	Re
Training	10	6	3	1507	1
Devel.	8	10	10	760	Ģ
Eval.	24	161	57	1298	12
Total	42	177	61	3565	14

Unified Feature Map Creation

Acoustic Feature

Log magnitude spectrum (logpsec) is used as the acoustic feature. We kept all frames without applying VAD and applied mean normalization using a 3-s sliding window.



Extended Feature Map

The unified time-frequency map was created by extending all utterances to the length of the longest utterance by repeating their feature maps. The benefits of this feature engineering approach is that there is no need for feature truncation or frame-level score combination.

Code & Contact

Code: github.com/jefflai108/Attentive-Filtering-Network Alternatively, you can reach the author at clai24@mit.edu

¹Centre for Speech Technology Research, University of Edinburgh, UK ²Center for Language and Speech Processing, Johns Hopkins University, USA ³INESC-ID / Instituto Superior Técnico, University of Lisbon, Portugal ⁴Digital Content and Media Sciences Research Division, National Institute of Informatics, Japan

Attentive Filtering Network



Attentive Filtering

Attentive Filtering (AF) accumulates features in frequency and time domains selectively. AF augments every input feature map ${f S}$ with an attention heatmap $\mathbf{A_s}$ to produce an new feature map ${f S}^*$ for the DRN. Mathematically,

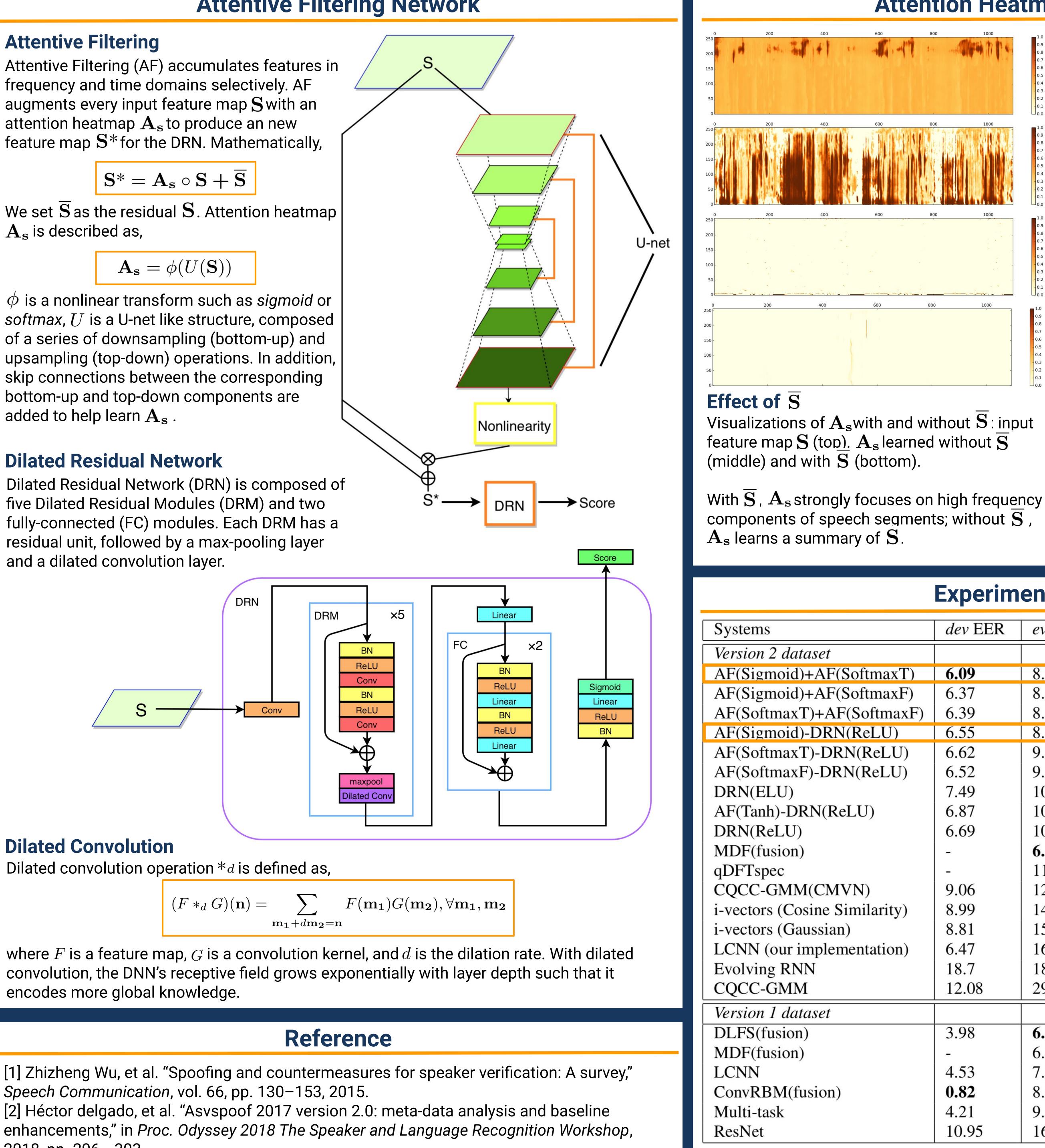
We set $\overline{\mathbf{S}}$ as the residual \mathbf{S} . Attention heatmap A_s is described as,

$$\mathbf{A}_{\mathbf{s}} = \phi(U(\mathbf{S}))$$

 ϕ is a nonlinear transform such as sigmoid or softmax, U is a U-net like structure, composed of a series of downsampling (bottom-up) and upsampling (top-down) operations. In addition, skip connections between the corresponding bottom-up and top-down components are added to help learn A_s .

Dilated Residual Network

Dilated Residual Network (DRN) is composed of five Dilated Residual Modules (DRM) and two fully-connected (FC) modules. Each DRM has a residual unit, followed by a max-pooling layer and a dilated convolution layer.



Dilated Convolution

Dilated convolution operation *d is defined as,

$$(F *_{d} G)(\mathbf{n}) = \sum_{\mathbf{m}_{1} + d\mathbf{m}_{2} = \mathbf{n}} F(\mathbf{n})$$

encodes more global knowledge.

Speech Communication, vol. 66, pp. 130–153, 2015. 2018, pp. 296– 303.

*Our reported numbers are averaged over 8 runs.

Attention Heatmap Visualization

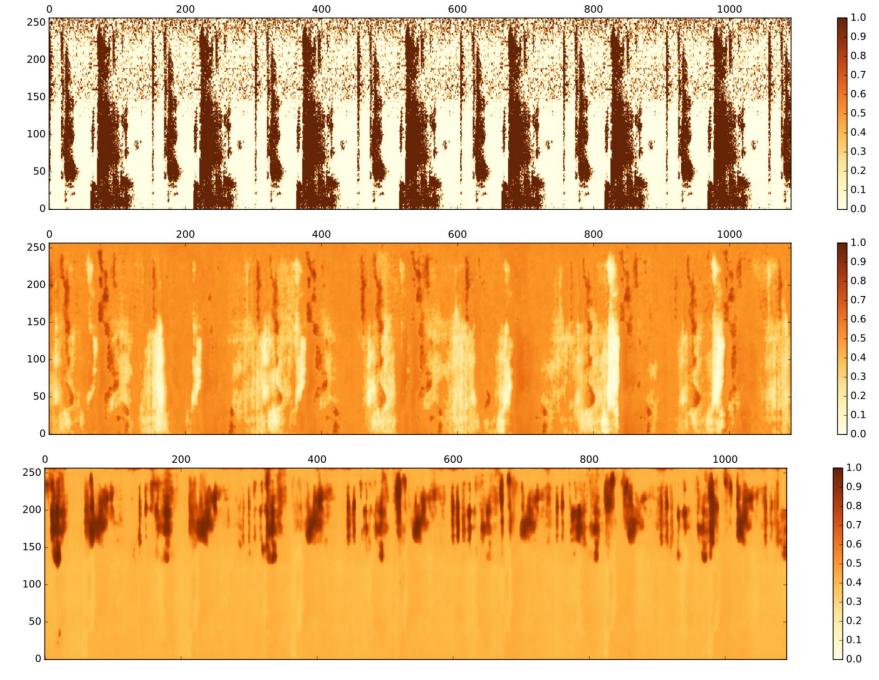
Effect of ϕ

Visualizations of $\mathbf{A_s}$ with different ϕ (from top to bottom): *Sigmoid*, *Tanh*, *SoftmaxF*, and SoftmaxT.

TÉCNICO LISBOA

Sigmoid scales each dimension independently to range [0, 1], while Softmax scales each dimension dependently between to range [0, 1], implying only a few dimensions (either frequency bins or time frames) are activated and most are suppressed.

On the other hand, *Tanh* outputs in [-1, 1], and potentially losses useful information in ${f S}$.



Baselines

• CQCC-GMM

• i-vectors

Light CNN

Single Systems

EERs of DRN and AF-DRN

are reported. We can see

almost all previous work.

that Attentive Filtering

Network outperforms

Fusions

Experimental Results						
	dev EER	eval EER	Diff.			
xT)	6.09	8.54	2.45			
xF)	6.37	8.80	2.43			
naxF)	6.39	8.98	2.59			
J)	6.55	8.99	2.44			
U)	6.62	9.28	2.66			
U)	6.52	9.34	2.82			
	7.49	10.16	2.67			
	6.87	10.17	3.30			
	6.69	10.30	3.61			
	-	6.32	-			
	-	11.43	-			
	9.06	12.24	3.18			
ty)	8.99	14.77	5.78			
	8.81	15.11	6.30			
on)	6.47	16.08	9.61			
	18.7	18.20	-0.50			
	12.08	29.35	17.27			
	3.98	6.23	2.25			
	-	6.54	-			
	4.53	7.34	2.81			
	0.82	8.89	8.07			
	4.21	9.56	5.35			
	10.95	16.26	5.31			
		1				

Evporimontal Doculta

Given visualizations of $\mathbf{A_s}$ we hypothesize that AF with different ϕ could be complementary, and as expected, fusing AF with Sigmoid and Softmax further reduces the EER.

Our fusion system provided a 30% relative improvement over the enhanced baseline system [2].