

Accuracy Evaluation Based on Simulation for Finite Precision Systems Using Inferential Statistics Justine Bonnot, Karol Desnos, Daniel Menard Univ Rennes, INSA Rennes, CNRS, IETR - UMR 6164, F-35000 Rennes, France

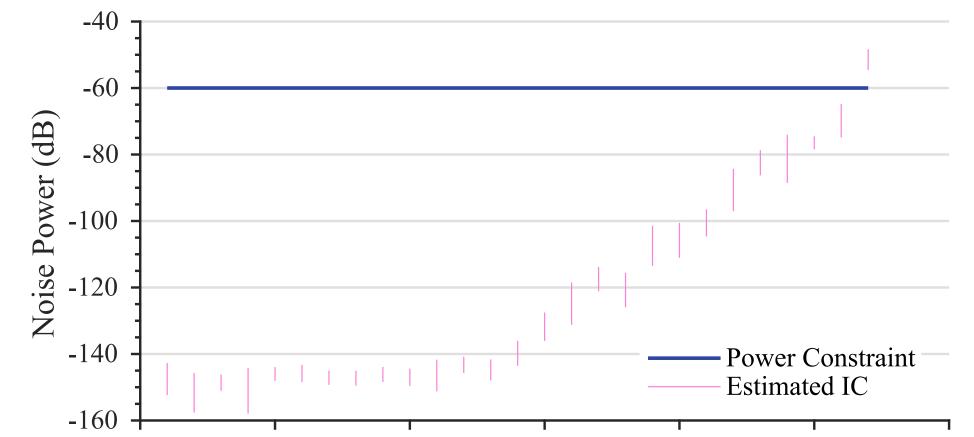
Context and Motivations

Embed high complexity algorithms on over-constrained platforms
Memory, energy, computation time constraints
Approximate computing (ACx) trades-off quality and cost
Data level ACx: Fixed-point arithmetic

Algorithm to compute N

```
Algorithm 1 Proposed Computation of N_Pprocedure COMPUTEN_P(\mathcal{E}, h, p, T)E \leftarrow \emptysetn \leftarrow 0repeat(e_n^2, ..., e_{n+T}^2) \leftarrow \text{sampling}(\mathcal{E}, T)E \leftarrow E \bigcup (e_n^2, ..., e_{n+T}^2)\overline{\mu}e_x^2 \leftarrow \text{computeMean}(E, n+T)\tilde{S}^2 \leftarrow \text{computeSD}(E, n+T, \overline{\mu}e_x^2)N_P \leftarrow \text{computeN}(\tilde{S}^2, h)n \leftarrow n + Tuntil n \ge N_Preturn N_Pend procedure
```

Objectives


- Fixed-point refinement process
 - NP-hard optimization problem
 - min($C(\mathbf{w})$) subject to $P(\mathbf{w}) < P_m$
 - C: implementation cost
 - w: word-length vector
 - P(w): noise power for word-lengths w
 - P_m: noise power constraint
- Challenge : accuracy evaluation

Exploitation for Word-Length Optimization

Adaptation of the number of samples to simulate

• Comparison with a threshold (constant) c

• Minimal number of samples to take a decision i.e. $c \not\in IC_{\mu_{e^2}}$

- Noise power $P(\mathbf{w})$ evaluation
- Simulation-based methods with a fixed number of samples [10⁵;10¹²]

Quantization noise power characterization

- Quantization noise power $P = E[e_x^2]$
- Error distance $e_x = |x_Q x_\infty|$
 - x_Q : application output with fixed-point data types
 - x_{∞} : application output with floating-point data types
- Mean and standard deviation estimators

 $\overline{\mu}_{e_x^2} = \frac{1}{T} \sum_{i=1}^T e_{x,i}^2$ $\tilde{S}^2 = \frac{1}{T} \sum_{i=1}^T (e_{x,i}^2 - \overline{\mu}_{e_x^2})^2$

Inferential statistics

• Confidence interval IC μ_{e^2}

• Estimation of $\mu_{e_x^2}$ included in IC_{$\mu_{e_x^2}$} with a probability p

Experiments: quality results

• N_P for varied elementary blocks and (h, p).

		Accuracy of estimation %					
		0.01		0.001			
	IC%	N_P	ICExpe	N_P	ICExpe		
FIR(64)	68	45	68.4	55	69.7		
	95	45	95	55.5	95.3		
	98	30	98.7	77.63	98.8		
	99	55	99	93.8	98.8		
	68	65	68	474	69		
Quantization	95	145	94.5	1785.8	95.4		
8-bit to 6-bit	98	145	98.4	2973	99		
	99	205	99.2	3012	99.4		
	68	18	69.6	857.8	70.3		
Quantization	95	42.7	95.1	3253.6	95.3		
float to 8-bit	98	39	98	5766	98.9		
	99	54	99	5565	99.1		

• Exploitation to accelerate Word-Length Optimization (WLO).

 $\mathsf{IC}_{\mu_{e_x^2}}^p = [\overline{\mu_{e_x^2}} - a_{\mu_{e_x^2}}^{\alpha}; \overline{\mu_{e_x^2}} + a_{\mu_{e_x^2}}^{\alpha}] \qquad a_{\mu_{e_x^2}}^{\alpha} = z_{\alpha}(p) \cdot \frac{\tilde{S}}{\sqrt{N_P - 1}}$ • Minimal number of samples to simulate for a desired accuracy h

 $N_{\mu_{e_x^2}} > \frac{z_{\alpha}^2 \cdot \tilde{S}^2}{\hbar^2}$

• Reference WLO : simulation on $N_{ref} = 100000$ samples

- G_N : gain in terms of number of simulated samples
- G_t : gain in terms of simulation time

• α : average ratio between the effective number of simulated samples and the minimal number of samples N = 30.

Applications	N_{v}	Cost	G_N	G_t	α
FIR	5	0.99	1108	879	1.03
IIR	15	1.01	1479	1333	1.04
FFT	10	1.01	775	610	1.17
HEVC	23	1.01	824	769	1.01
Stereo	10	1	123.2	89.9	1.3

