(GENERATIVE GRAPH CONVOLUTIONAL NETWORK FOR GROWING (GRAPHS

Contribution Highlights

Stepn,e.g.n=3 Step (n+1)

e Proposed a unified generative graph convolutional network to model the growing Prior (3)

graphs. /“ . E‘: ) KLDivergence . %0 » » Reconstruction .

. : S . . 7 0,0 7 0,3

e The framework models the underlying graph generation sequence considering not . . “1 . 21 f ((ZI’ % )) . . : LOSS

only the topological information, but also the node attributes information. , . 353} I I . . I P = ' ' ’ ¢ l ?

2 o

e Learns the vector representations for both observed nodes in the graph and new I P3,0 P33 !

1solated nodes that might potentially link to the graph, where-as most existing 1 | . 35[’) . Z3 3

methods rely on fixed graphs. Standard — : :

| . normal Loss, = Reconstruction loss + KL divergence
e The proposed model shows superior results on several benchmark data sets on link 3
C (New node) . Posterior
prediction tasks.
Background and Applications Proposed Method Experiment Results
Repr.esentation on graphs. | | e Addresses the challenge of generating graph structure for growing graphs .
Learning the vector representations for nodes in the graph which makes the topolog- with new nodes that are unconnected to the previous observed graph. Met h()d C()I'a Clt eseer Pubmed
ical information contained in the graph accessible by down stream tasks. . . . . .. .
e Major assumption : underlying generating mechanism is stationary dur-

e Use cases includes but not limited to recommender systems, outlier detection ing erowth. AUC AP AUC AP AUC AP

and comfn.umty detection. | e We learn the sequential generation of graph structures, for cases where Isolated new nodes
e Personalizing recommendations for a new user based on other users seen so far. both node attributes and topological information exist as well as for cases G CN V AE 75 1 763 -0 0 1 Q5 5
e Applications in identifying optimal audience for targeting based on the social graph. where only node attributes are available. - ' ' +t ' '

MLP-VAE 756 756 81.8 &83.7 77.1
G-GCN 83.3 85.0 89.5 91.3 87.5
e When a new node is added, we treat it as connected to all of previous

Nodes in observed graph
nodes with the same probability p, where p may reflect the overall sparsity g P

of the graph. GCN-VAE 931 944 933 944 96.7
e When formulating encoding distribution, due to the efficiency of GCN in MLP—V AE 6.5 87 2 87 1 39 3 79 Y

node classification and linkage prediction, we adopt their convolutional

The rise of growing graphs layers. G-GCN 94.1 95.2 94.60 95.9 96.9

Proposed Approach

Similar Products

Existing methods are great, but they only work for fixed graphs. In many applica- e We use what the model has informed us till the i step in an adaptive
tions, the graphs are not fixed and keep growing, example : way by treating 2/t € RUFDXd a9 [z0H1 20
e New items / New users / New campaigns e Hidden factors for previous nodes use the encoding distribution where the
candidate adjacency matrix A«; passes information from previous steps. Conclusion
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