

1. ABSTRACT

TV- L^1 is a classical diffusion-reaction model for low-level vision tasks, which can be solved by a duality based iterative algorithm. Considering the recent success of end-to-end learned representations, we propose a TV-LSTM network to unfold the duality based iterations into long shortterm memory (LSTM) cells. To provide a trainable network, we relax the difference operators in the gate and cell update of TV-LSTM to trainable parameters. Then, the proposed end-to-end trainable TV-LSTMs can be naturally connected with various task-specific networks, e.g., optical flow estimation and image decomposition.

6. RESULT II

We present the qualitative results achieved by the TV-LSTMs based image decomposition algorithm. In figure 5, it can be seen that, our TV-LSTMs can produces well-decomposed textures. Moreover, our TV-LSTMs can achieve a speed of 7 fps on images with a resolution of 410×620 pixels.

Figure 5: Examples of decomposition results achieved by different methods. (a) Input. (b) Structures [2]. (c) Structures (TV-LSTMs without training). (d) Structures (trained TV-LSTMs). (e) Textures (trained TV-LSTMs).

REFERENCES

- [1] L. Fan. End to end learning of motion representation for video understanding. CVPR, June 2018.
- [2] L. Xu. Structure extraction from texture via relative total variation. SIGGRAPH, 2012.

5. RESULTS I We mainly compare our method with TVNet [1] for optical flow estimation. We followed the same experimental settings as TVNet, performed on the MiddleBurry dataset. Table 1 presents the qualitative results achieved by TV-LSTMs and TVNet. From this table, it can be seen that the proposed method outperforms the original TVNet.

FROM TV- L^1 **TO GATED RECURRENT NETS**

YUQIANG FANG, HAIYAN FAN, YULAN GUO, LIN SUN, ZHIHAO MA

2. TV- L^1 MODEL

We consider the following TV- L^1 model:

Find
$$\hat{x} \in \operatorname*{argmin}_{x} \operatorname{TV}_{i}(x) + \lambda \|f(x)\|_{L^{1}(\Omega)}$$
. (1)

Here, $\|\cdot\|_{L^1(\Omega)}$ is the L^1 -norm. An efficient way to solve the optimization problem defined in equation (1) is a duality based implementation:

$$p_{i,j}^{k+1} = \frac{p_{i,j}^k + \tau \left(\nabla \left(\operatorname{div} p^k - v/\theta \right) \right)_{i,j}}{1 + \tau \| \left(\nabla \left(\operatorname{div} p^k - v/\theta \right) \right)_{i,j} \|}, \quad (2)$$

$$x^{k+1} = v^{k+1} - \theta \operatorname{div}(p^{k+1})$$
 (3)

Methods *	No Training	Training
TVNet(1-1-10)	3.47	1.24
TVNet(3-1-10)	2.00	0.52
TV-LSTMs(1-1-30)	2.55	1.30
TV-LSTMs(3-1-10)	1.77	0.51
TV-LSTMs(3-1-30)	1.67	0.36

*TVNet / TV-LSTMs($N_{warps} - N_{scales} - N_{iters}$)

Table 1: The average EPEs on MiddleBurry

Figure 4: Optical flow results by trained TV-LSTMs

FUTURE RESEARCH

This work proposes a neural network, namely TV-LSTMs, to achieve the TV- L^1 model in an end-toend manner. We show that the optimization of TV- L^1 can be unfolded as a LSTM-like network with

a novel computational unit. Furthermore, our TV-LSTMs can be naturally extended to a task-specific network by using a specific reaction term.

Space Engineering University

3. CONNECTION WITH LSTM-LIKE RECURRENT NETWORKS

Figure 1: $TV-L^1$ iterations as LSTMs network

we can map specialized TV- L^1 iterations to a LSTM-like network. We partition the TV- L^1 iterations as gate updates:

$$\sigma_f^{k+1} = \sigma\left(\frac{1}{1 + \frac{\tau}{\theta} \|\nabla x^k\|}\right),\tag{4}$$

$$\sigma_{\text{in}}^{k+1} = \sigma \left(\frac{\frac{\tau}{\theta}}{1 + \frac{\tau}{\theta} \|\nabla x^k\|} \right) , \qquad (5) \qquad \underset{\text{life}}{\text{m}}$$

4. The End-to-end Trainable Network

To imitate the iterative process in $TV-L^1$, TV-LSTMs has two gates to protect and control the cell state step-by-step:

Output Update: Forget Gate σ_f^{k+1} : the computation of gradient $\|\nabla x\|$ in (4) can be discretized as

tion (right)

updates

 $\bar{p}^{k+1} \leftarrow -\bar{p}^{k+1}$

and output updates

ke network.

where $v^{k+1} = x^{k+1} + TH(x^{k+1}, \lambda\theta)$, and the cell

$$\nabla x^k, \quad p^{k+1} \leftarrow \sigma_f^{k+1} \odot p^k + \sigma_{\text{in}}^{k+1} \odot \bar{p}^{k+1}, \tag{6}$$

$$x^{k+1} \leftarrow v^{k+1} - \theta \operatorname{div}\left(p^{k+1}\right) \,. \tag{7}$$

Starting from initial values of p^0 and x^0 , the TV- L^1 implementation defined in equations (4)-(7) closely mirrors a canonical LSTM. The output of the network at time-step k is x^k , and p^k is considered as the internal LSTM memory cell, or the latent cell state. Thus, the iterative process in $TV-L^1$ nodel can be unfolded as a layer-to-layer LSTM-

Input Gate and Candidate Cell:

$$x^{k+1} \leftarrow \left(-x^k * w_{in}, -x^k * w_{in}^{\top}\right). \tag{9}$$

$$\operatorname{div}(p) = \hat{p}_1 * w_o + \hat{p}_2 * w_o^{\top}, \quad (10)$$

designed for different computer vision problems such as optical flow and image decomposition.

Figure 3: An illustration of feed forward networks in TV-LSTMs for optical flow (left) and image decomposi-

CONTACT INFORMATION

Email fangyuqiang@nudt.edu.cn **Phone** +86 - 13521530926