・ロット (母) ・ ヨ) ・ コ)

Transmit Radiation Pattern Invariance in MIMO Radar With Application to DOA Estimation

Aboulnasr Hassanien, **Sergiy A. Vorobyov***, Arash Khabbazibasmenj

*Dept. Signal Processing and Acoustics Aalto University Espoo/Helsinki, Finland

> ICASSP 2016 03.22.2016 Shanghai, China

IEEE Signal Processing Letters, vol. 22, no. 10, pp. 1609–1613, Oct. 2015

1/20

- Beamspace transformation and beamforming techniques are the key approaches in many different fields
- Having the same beampattern for different beamforming vectors often plays a key importance in practical applications
- Existing transmit beamspace design methods result in non-identical individual (per waveform) transmit radiational patterns

・ロット (母) ・ ヨ) ・ コ)

- Consider a radar system with *M* transmit antennas
- Θ is the angular sector where desired targets are located.
- $\overline{\Theta}$ is the out-of-sector region where interference is located.
- Design mother transmit weight vector w to focus the transmit power within Θ (several methods can be used for designing w).

・ロット (母) ・ ヨ) ・ コ)

Signal Model (Cont'd)

• The transmit array beampattern can be expressed as

 $p(\theta) = \|\mathbf{W}^{H}\mathbf{a}(\theta)\|^{2}$

a^{*}(θ): Tx array steering vector **W**: $M / \times K$ transmit weight matrix

The signals at the input of the transmit antennas

$$\mathbf{x}(t) = \sum_{k=1}^{K} \psi_k(t) \mathbf{w}_k^*$$

 $\psi_k(t), \ k = 1, \dots, K$: Orthogonal waveforms $\mathbf{w}_k, \ k = 1, \dots, K$: Transmit weight vectors

• How to design \mathbf{w}_k , $k = 1, \dots, K$?

イロト イヨト イヨト イヨト 三日

Transmit weight vector design

Start with a single weight vector

$$p(\theta) = \|\mathbf{w}^H \mathbf{a}(\theta)\|^2$$

- Simple methods can be used (Spheroidal, FIR design, convex optimization, etc)
- The total number of other distinct beamforming vectors with the same exact beampattern is at most $2^{M-1} 1$
- Similar results have been observed in Time series analysis

・ロット (母) ・ ヨ) ・ コ)

• Consider the following function of a single variable x

First Multiplicative Term

$$f(x) \triangleq \overbrace{(w_1 + w_2 x + w_3 x^2 + \dots + w_M x^{M-1})}^{\text{First Multiplicative Term}}$$
Second Multiplicative Term

$$\times \overbrace{(w_1^* + w_2^* x^{-1} + w_3^* x^{-2} + \dots + w_M^* x^{-M+1})}^{\text{First Multiplicative Term}}$$

• It can be immediately concluded that

$$p(\theta) = f(e^{j\pi\sin(\theta)})$$

 If x₀ is a root of the first term, then 1/x_o^{*} is a root of the second term!

イロン イロン イヨン イヨン 三日

• *f*(*x*) can be decomposed as

$$f(x) = |w_M|^2 \left(\frac{w_1}{w_M} + \frac{w_2}{w_M}x + \frac{w_3}{w_M}x^2 + \dots + x^{M-1}\right) \\ \times \left(\frac{w_1^*}{w_M^*} + \frac{w_2^*}{w_M^*}x^{-1} + \frac{w_3^*}{w_M^*} + \dots + x^{-M+1}\right) \\ = |w_M|^2 \prod_{i=1}^{M-1} (x - x_i) \prod_{i=1}^{M-1} (x^{-1} - x_i^*)$$

- 2^{*M*-1} different different combinations!
- w can be used to generate the population $w_1 \dots w_{2^{M-1}}$

イロン イロン イヨン イヨン 三日

• The selection of *K* weight vectors under uniform power constraint can be cast as

$$\begin{split} \min_{\mathbf{v}_{1},...,\mathbf{w}_{K}} \eta \\ \text{s.t.} \sum_{k=1}^{K} |\mathbf{w}_{[k,m]}|^{2} \leq \eta, \quad m = 1, \dots, M \\ \{\mathbf{w}_{1}, \dots, \mathbf{w}_{K}\} \in \mathbf{W}_{\text{pop}} \end{split}$$

 W_{pop} : population of $2^{M-1} - 1$ associated weight vectors

 Additional requirements can be enforced to achieve additional benefits!

- The larger the magnitude of x_i, the larger the deviation between the two vectors associated with x_i and 1/x_i^{*}
- Partition into two groups

$$(x) = |w_M|^2 \prod_{i=1}^{Q} (x - x_i) \prod_{i=1}^{M-Q-1} (x - x_i) \times \prod_{i=1}^{Q} (x^{-1} - x_i^*) \prod_{i=1}^{M-Q-1} (x^{-1} - x_i^*) = |w_M|^2 h(x) \prod_{i=1}^{Q} (x - x_i) \prod_{i=1}^{Q} (x^{-1} - x_i^*)$$

h(x): Contains M - Q - 1 smallest roots

A smaller population can be utilized

Simulation Results

- M = 10 transmit elements
- $\Theta = [-10^{\circ}, 10^{\circ}]$
- Spheroidal based design: $\mathbf{w}_{\text{SPH}} = \sqrt{M/2}(\mathbf{u}_1 + \mathbf{u}_2)$ \mathbf{u}_1 and \mathbf{u}_2 : Two principle eigenvectors of the matrix $\mathbf{A} = \int_{\Theta} \mathbf{a}(\theta) \mathbf{a}^H(\theta) d\theta$
- Convex optimization based design

 $\min_{\mathbf{w}} \max_{i} \|\mathbf{w}^{H} \mathbf{a}(\theta_{i}) - \mathbf{e}^{-j\phi_{i}}\|, \quad \theta_{i} \in \mathbf{\Theta}, \ i = 1, \dots, I$ subject to $\|\mathbf{w}^{H} \mathbf{a}(\theta_{k})\| \leq \delta, \quad \theta_{k} \in \bar{\mathbf{\Theta}}, \ k = 1, \dots, K$

IEEE Signal Processing Letters, vol. 22, no. 10, pp. 1609–1613, Oct. 2015

・ロン ・回 と ・ ヨン ・ ヨー

・ロト ・回ト ・ヨト ・ヨト

Simulation Results (Cont'd)

Transmit beampattern (One mother weight vector)

イロン イヨン イヨン イヨン

Simulation Results (Cont'd)

Transmit power distribution across array elements

IEEE Signal Processing Letters, vol. 22, no. 10, pp. 1609–1613, Oct. 2015

12/20

ヘロン 人間 とくほ とくほ と

Simulation Results (Cont'd)

Transmit power distribution across array elements

IEEE Signal Processing Letters, vol. 22, no. 10, pp. 1609–1613, Oct. 2015

13/20

ヘロン ヘロン ヘビン ヘビン

Simulation Results (Cont'd)

MIMO using K = 4 weight vectors

Transmit power distribution across array elements

Simulation Results (Cont'd)

MIMO using K = 4 weight vectors.

Transmit power distribution across array elements

イロト イボト イヨト イヨト 二日

Simulation Results (Cont'd)

Two targets -2° , 2°

DOA estimation RMSE vs SNR

Simulation Results (Cont'd)

Two targets -2° , 2°

Probability of source resolution vs SNR

イロン イヨン イヨン イヨン

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Simulation Results (Cont'd)

Joint design of K = 4 wight vectors

Transmit power distribution across array elements

Simulation Results (Cont'd)

Transmit power distribution across array elements

・ロト ・回ト ・ヨト ・ヨト

- An efficient approach for designing a transmit beamspace transformation in MIMO radar has been developed
- A principal beamforming vector is used to generate 2^{M-1} weight vectors with the same transmit pattern
- A computationally efficient sub-optimal approach for selecting best beamforming vectors has been developed
- The proposed approach has been tested by simulations in application to DOA estimation