## Transmit Radiation Pattern Invariance in MIMO Radar With Application to DOA Estimation

## Aboulnasr Hassanien, Sergiy A. Vorobyov*, Arash Khabbazibasmenj

*Dept. Signal Processing and Acoustics
Aalto University
Espoo/Helsinki, Finland

## ICASSP 2016 03.22.2016 <br> Shanghai, China

## Introduction

- Beamspace transformation and beamforming techniques are the key approaches in many different fields
- Having the same beampattern for different beamforming vectors often plays a key importance in practical applications
- Existing transmit beamspace design methods result in non-identical individual (per waveform) transmit radiational patterns


## Signal Model

- Consider a radar system with $M$ transmit antennas
- $\Theta$ is the angular sector where desired targets are located.
- $\overline{\boldsymbol{\Theta}}$ is the out-of-sector region where interference is located.
- Design mother transmit weight vector w to focus the transmit power within $\boldsymbol{\Theta}$ (several methods can be used for designing w).


## Signal Model (Cont'd)

- The transmit array beampattern can be expressed as

$$
p(\theta)=\left\|\mathbf{W}^{H} \mathbf{a}(\theta)\right\|^{2}
$$

$\mathbf{a}^{*}(\theta)$ : Tx array steering vector
W: $M / \times K$ transmit weight matrix

- The signals at the input of the transmit antennas

$$
\mathbf{x}(t)=\sum_{k=1}^{K} \psi_{k}(t) \mathbf{w}_{k}^{*}
$$

$\psi_{k}(t), k=1, \ldots, K$ : Orthogonal waveforms
$\mathbf{w}_{k}, k=1, \ldots, K$ : Transmit weight vectors

- How to design $\mathbf{w}_{k}, k=1, \ldots, K$ ?


## Transmit weight vector design

- Start with a single weight vector

$$
p(\theta)=\left\|\mathbf{w}^{H} \mathbf{a}(\theta)\right\|^{2}
$$

- Simple methods can be used (Spheroidal, FIR design, convex optimization, etc)
- The total number of other distinct beamforming vectors with the same exact beampattern is at most $2^{M-1}-1$
- Similar results have been observed in Time series analysis


## Transmit Radiation Pattern Invariance

- Consider the following function of a single variable $x$

First Multiplicative Term

$$
\begin{aligned}
f(x) & \triangleq \overbrace{\left(w_{1}+w_{2} x+w_{3} x^{2}+\cdots+w_{M} x^{M-1}\right)} \\
& \times \overbrace{\left(w_{1}^{*}+w_{2}^{*} x^{-1}+w_{3}^{*} x^{-2}+\cdots+w_{M}^{*} x^{-M+1}\right)}^{\text {Second Multiplicative Term }}
\end{aligned}
$$

- It can be immediately concluded that

$$
p(\theta)=f\left(e^{j \pi \sin (\theta)}\right)
$$

- If $x_{0}$ is a root of the first term, then $1 / x_{o}^{*}$ is a root of the second term!


## Transmit Radiation Pattern Invariance

- $f(x)$ can be decomposed as

$$
\begin{aligned}
f(x) & =\left|w_{M}\right|^{2}\left(\frac{w_{1}}{w_{M}}+\frac{w_{2}}{w_{M}} x+\frac{w_{3}}{w_{M}} x^{2}+\cdots+x^{M-1}\right) \\
& \times\left(\frac{w_{1}^{*}}{w_{M}^{*}}+\frac{w_{2}^{*}}{w_{M}^{*}} x^{-1}+\frac{w_{3}^{*}}{w_{M}^{*}}+\cdots+x^{-M+1}\right) \\
& =\left|w_{M}\right|^{2} \prod_{i=1}^{M-1}\left(x-x_{i}\right) \prod_{i=1}^{M-1}\left(x^{-1}-x_{i}^{*}\right)
\end{aligned}
$$

- $2^{M-1}$ different different combinations!
- w can be used to generate the population $\mathbf{w}_{1} \ldots \mathbf{w}_{2^{M-1}}$


## Transmit Radiation Pattern Invariance

- The selection of $K$ weight vectors under uniform power constraint can be cast as

$$
\begin{aligned}
& \min _{\mathbf{w}_{1}, \ldots, \mathbf{w}_{K}} \eta \\
& \text { s.t. } \\
& \quad \sum_{k=1}^{K}\left|\mathbf{w}_{[k, m]}\right|^{2} \leq \eta, \quad m=1, \ldots, M \\
& \quad\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{K}\right\} \in \mathbf{W}_{\text {pop }}
\end{aligned}
$$

$\mathrm{W}_{\text {pop }}$ : population of $2^{M-1}-1$ associated weight vectors

- Additional requirements can be enforced to achieve additional benefits!


## Transmit Radiation Pattern Invariance

- The larger the magnitude of $x_{i}$, the larger the deviation between the two vectors associated with $x_{i}$ and $1 / x_{i}^{*}$
- Partition into two groups

$$
\begin{aligned}
f(x)= & \left|w_{M}\right|^{2} \prod_{i=1}^{Q}\left(x-x_{i}\right) \prod_{i=1}^{M-Q-1}\left(x-x_{i}\right) \\
& \times \prod_{i=1}^{Q}\left(x^{-1}-x_{i}^{*}\right) \prod_{i=1}^{M-Q-1}\left(x^{-1}-x_{i}^{*}\right) \\
= & \left|w_{M}\right|^{2} h(x) \prod_{i=1}^{Q}\left(x-x_{i}\right) \prod_{i=1}^{Q}\left(x^{-1}-x_{i}^{*}\right)
\end{aligned}
$$

$h(x)$ : Contains $M-Q-1$ smallest roots

- A smaller population can be utilized


## Simulation Results

- $M=10$ transmit elements
- $\boldsymbol{\Theta}=\left[-10^{\circ}, 10^{\circ}\right]$
- Spheroidal based design: $\mathbf{w}_{\text {SPH }}=\sqrt{M / 2}\left(\mathbf{u}_{1}+\mathbf{u}_{2}\right)$
$\mathbf{u}_{1}$ and $\mathbf{u}_{2}$ : Two principle eigenvectors of the matrix $\mathbf{A}=\int_{\boldsymbol{\Theta}} \mathbf{a}(\theta) \mathbf{a}^{H}(\theta) d \theta$
- Convex optimization based design

$$
\begin{aligned}
& \min _{\mathbf{w}} \max _{i}\left\|\mathbf{w}^{H} \mathbf{a}\left(\theta_{i}\right)-e^{-j \phi_{i}}\right\|, \quad \theta_{i} \in \boldsymbol{\Theta}, i=1, \ldots, l \\
& \text { subject to }\left\|\mathbf{w}^{H} \mathbf{a}\left(\theta_{k}\right)\right\| \leq \delta, \quad \theta_{k} \in \overline{\boldsymbol{\Theta}}, k=1, \ldots, K
\end{aligned}
$$

## Simulation Results (Cont'd)



Transmit beampattern (One mother weight vector)

## Simulation Results (Cont'd)



Transmit power distribution across array elements

## Simulation Results (Cont'd)



Transmit power distribution across array elements

## Simulation Results (Cont'd)

## MIMO using $K=4$ weight vectors



Transmit power distribution across array elements

## Simulation Results (Cont'd)

MIMO using $K=4$ weight vectors.


Transmit power distribution across array elements

## Simulation Results (Cont'd)

Two targets $-2^{\circ}, 2^{\circ}$


## DOA estimation RMSE vs SNR

## Simulation Results (Cont'd)

Two targets $-2^{\circ}, 2^{\circ}$


## Probability of source resolution vs SNR

## Simulation Results (Cont'd)

Joint design of $K=4$ wight vectors


Transmit power distribution across array elements

## Simulation Results (Cont'd)

$K=4$ wight vectors drawn from population


Transmit power distribution across array elements

## Conclusions

- An efficient approach for designing a transmit beamspace transformation in MIMO radar has been developed
- A principal beamforming vector is used to generate $2^{M-1}$ weight vectors with the same transmit pattern
- A computationally efficient sub-optimal approach for selecting best beamforming vectors has been developed
- The proposed approach has been tested by simulations in application to DOA estimation

