

PRINCETON UNIVERSITY

Introduction

Many factors in a typical environment can diminish the quality of a recording, including noise, reverberance, and undesirable equalization.

Existing SE methods:

- Spectral methods, require target phase information to recover waveform, which introduces noticeable artifacts.
- Popular sample-based loss functions for waveform methods are not in line with human perception, and are brittle to misalignment in real recordings.

We propose:

- A perceptually-motivated loss function that combines adversarial loss with spectrogram features.
- A waveform SE method that works with synthetic and real data.

Both objective and subjective evlauation results show:

- improved performance over previous methods for real and synthetic data.
- capability to ameliorate several types of recording artifacts.

Perceptually-motivated Environment-specific Speech Enhancement

Jiaqi Su¹, Adam Finkelstein¹, Zeyu Jin²

r:	$L_G(x,x')=lpha LogSpectron$
	+ (1-lpha)(1-D(Log I
tor:	$L_D(x,x') = D(LogMe$

Method	PESQ	FWSEGSNR	SRMR	CD
CLEAN	4.64	35.0	8.41	0.0
REVERB	1.24	-0.63	5.82	7.02
DN-WN	2.17	-1.55	8.18	6.94
BLSTM	2.10	5.87	6.90	3.87
WPE	1.39	0.01	7.03	6.98
SPEC	2.45	6.34	7.45	4.70
S-GAN	2.61	12.53	8.17	3.12