Sequential structured dictionary learning for block sparse representations

Abd-Krim Seghouane*, Asif Iqbal*, & Karim Abed-Meraim[†]

* Department of Electrical and Electronic Engineering

Melbourne School of Engineering, The University of Melbourne, Australia

† PRISME Laboratory, The University of Orléans, France

Introduction

- Dictionary learning methods have been applied to a number of signal and image processing applications.
- In some applications, the observed signal may have a multi-subspace structure that can be well exploited under the block-sparse signal representation framework.
- Using the observation that observed signals can be approximated as a sum of low rank matrices, we propose a noew algorithm for learning a block-structured dictionary for block-sparse signal representations.
- Proposed algorithm not only performs better, but is also more efficient.
- This work is an extension of [2] and [3].

Background

Consider a data matrix $\mathbf{Y} = \{\mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_N\} \in \mathbb{R}^{n \times N}$ and a sparsity constraint s, DL algorithms seek to find a dictionary $\mathbf{D} \in \mathbb{R}^{n \times K}$ and a sparse representation matrix $\mathbf{X} \in \mathbb{R}^{K \times N}$ by optimizing the following cost function

$$\min_{\mathbf{D}, \mathbf{X}} ||\mathbf{Y} - \mathbf{D}\mathbf{X}||_F^2 \text{ s.t. } ||\mathbf{x}_i||_0 \le s, \ \forall \ 1 \le i \le N,$$
and $||\mathbf{d}_m||_2 = 1$, $\forall \ 1 \le m \le K$. (1)

Optimization of the above cost function is carried out via alternating optimization of \mathbf{D} and \mathbf{X} .

Given a block-structured $\mathbf{D} = [\mathbf{D}_1, ..., \mathbf{D}_J]$ with a known J blocks structure, i.e.; $\mathbf{D}_j \in \mathbb{R}^{n \times p_j}$, $j = 1, ..., J, p_j < n$, BK-SVD [4] solves the block formulation of (1)

$$\min_{\mathbf{D},\mathbf{X}} ||\mathbf{Y} - \mathbf{D}\mathbf{X}||_F^2 \quad \text{s.t.} \quad ||\mathbf{x}_i||_{0,p} \le s, \tag{2}$$

using an iterative alternating scheme. For every block j, they use SVD to solve

$$||\mathbf{R}_{j}^{R} - \mathbf{D}_{j}\tilde{\mathbf{X}}_{j}||_{F} \tag{3}$$

where $\mathbf{R}_{j}^{R} = \mathbf{R}_{j}\mathbf{I}_{w_{j}}$, $\mathbf{R}_{j} = \mathbf{Y} - \sum_{i=1, i \neq j}^{J} \mathbf{D}_{i}\mathbf{X}_{i}$, and $\tilde{\mathbf{X}}_{i} = \mathbf{X}_{i}\mathbf{I}_{w_{i}}$.

The Proposed Approach

The proposed algorithm is based on a variant of (2) where the ℓ_2 -norm $\| \cdot \|_2$ [1] group sparse penalty is used instead of the $\| \cdot \|_{0,p}$ to give

$$\min_{\mathbf{D}, \mathbf{X}} \sum_{i=1}^{N} \left(\left\| \mathbf{y}_{i} - \sum_{j=1}^{J} \mathbf{D}_{j} \mathbf{x}_{ij} \right\|_{2}^{2} + \lambda \sum_{j=1}^{J} \sqrt{p_{j}} \| \mathbf{x}_{ij} \|_{2} \right)$$
and $\| \mathbf{d}_{m} \|_{2} = 1 \ \forall \ 1 \leq m \leq K.$ (4)

Our method is based on rewriting the first term of (4) as $\|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_F^2$ and observing that the matrix $\mathbf{D}\mathbf{X}$ can be expressed as a sum of block sparse low rank matrices or $\sum_{i=1}^{J} \mathbf{D}_j \mathbf{X}_j$. With an additional block incoherence constraint, the optimization problem (4) becomes

$$\sum_{j=1}^{J} \min_{\mathbf{D}_{j}, \mathbf{X}_{j}} \|\mathbf{E}_{j} - \mathbf{D}_{j} \mathbf{X}_{j}\|_{F}^{2} + \lambda \sum_{i=1}^{N} \sqrt{p_{j}} \|\mathbf{x}_{ij}\|_{2}$$
(5)
s.t.
$$\mathbf{D}_{j}^{\mathsf{T}} \mathbf{D}_{j} = \mathbf{I}_{p_{j}}$$

where \mathbf{x}_{ij} is the i^{th} column of \mathbf{X}_j , $\mathbf{E}_j = \mathbf{Y} - \sum_{i=1, i\neq j}^{J} \mathbf{D}_i \mathbf{X}_i$, and \mathbf{I}_{p_j} is a p_j dimensional identity matrix.

Algorithm Overview

Algorithm 1: The proposed Sequential Structured Dictionary Learning Algorithm.

Input:
$$\mathbf{Y}, \mathbf{D}_{ini} = [\mathbf{D}_1, \mathbf{D}_2, \dots, \mathbf{D}_J], \ J, \ \epsilon_1, \ \lambda, B$$

1 Ortho-normalize blocks of \mathbf{D}_{ini} , set $\epsilon_2 = 0.01$

2 while $\parallel \boldsymbol{D}_m - \boldsymbol{D}_{m-1} \parallel_F / \parallel \boldsymbol{D}_{m-1} \parallel_F \ge \epsilon_1$ do

3 | for $j = 1:J$ do

4 | $\mathbf{E}_j = \mathbf{Y} - \sum_{i=1, i \neq j}^J \mathbf{D}_i \mathbf{X}_i$,

5 | while $\parallel \boldsymbol{D}_j^t - \boldsymbol{D}_j^{t-1} \parallel_F \ge \epsilon_2$ do

6 | $Sparse \ Coding:$

7 | for $i = 1:N$ do

8 | $\mathbf{x}_{ij}^t = \left(1 - \frac{\lambda \sqrt{p_j}}{2 \|\mathbf{D}_j^{t-1}\mathbf{e}_{ij}\|_2}\right)_+ \mathbf{D}_j^{\top t-1} \mathbf{e}_{ij}$

9 | $Dictionary \ Update:$

10 | Compute the SVD of

 $\mathbf{E}_j \mathbf{X}_j^{t} = \mathbf{U} \Lambda \mathbf{V}^{\top}$

11 | Update $\mathbf{D}_j^t = \mathbf{U} \mathbf{V} \top$

Output: $\mathbf{D}_j, \mathbf{X}_j$

Result: \mathbf{D} and \mathbf{X}

Synthetic Experiment Results

Table 1: Mean normalized reconstruction error over 100 trials, for multiple signal to noise ratios and signal block-sparsity levels s. λ is the block-sparsity controlling parameter and \hat{s} is the final block-sparsity level of the representation.

SNR in dB -10			-5				0					
S	2	3	4	5	2	3	4	5	2	3	4	5
K-SVD	2.691	2.879	2.991	3.058	1.562	1.647	1.698	1.729	0.940	0.964	0.978	0.987
BK-SVD	2.316	2.543	2.702	2.819	1.406	1.498	1.567	1.619	0.913	0.938	0.949	0.960
Proposed	1.350	1.275	1.328	1.394	0.970	0.975	0.971	0.980	0.801	0.807	0.798	0.789
$\boldsymbol{\hat{s}}$	2.25	3.22	4.17	5.08	2.17	3.19	4.20	4.99	2.11	3.14	4.14	4.94
λ	0.96	1.07	1.12	1.15	0.60	0.66	0.68	0.71	0.42	0.45	0.47	0.49

Computational Efficiency on Synthetic Exp

Table 2: Run-time for a single trial in seconds.

SNR	0 dB						
S	2	3	4	5			
K-SVD	9.9	10.8	12.5	13.7			
BK-SVD	4.8	6.4	8.3	10.2			
Proposed	3.6	4.3	3.5	3.5			

Experiment on Real Images

Table 3: Mean NRE results for all algorithms over 10 trials. s the block-sparsity parameter, the best results are in **BOLD**.

	K-S	VD	BK-S	SVD	Proposed		
S	2	3	2	3	2	3	
Baboon	0.199	0.279	0.181	0.202	0.177	0.187	
Barbara	0.196	0.254	0.138	0.216	0.131	0.133	
Boat	0.143	0.255	0.113	0.158	0.107	0.104	
Flinstones	0.176	0.226	0.184	0.190	0.165	0.154	
House	0.169	0.273	0.096	0.191	0.074	0.070	
Lena	0.141	0.223	0.113	0.105	0.075	0.072	
Cameraman	0.399	0.460	0.440	0.448	0.391	0.414	

References

[1] S. Bakin.

Adaptive regression and model selection in data mining problems.

PhD Thesis, The Australian National University, Canberra, 1999.

[2] A. K. Seghouane and A. Iqbal.
 Consistent adaptive sequential dictionary learning.
 Signal Processing, 153:300–310, 2018.

[3] A. K. Seghouane, A. Iqbal, and K. Abed Meraim.

A sequential block-structured dictionary learning algorithm for block sparse representations.

IEEE Transactions on Computational

Imaging, pages 228 – 239, 2018.

[4] L. Zelnik-Manor, K. Rosenblum, and Y. C. Eldar.

Dictionary optimization for block-sparse representations.

IEEE Transactions on Signal Processing, 60:2386–2395, 2012.