
Adaptive Subspace Detector in High Dimensional Space with Insufficient
Training Data

Aref Miri Rekavandi, Abd-Krim Seghouane, Robin J. Evans
Department of Electrical and Electronic Engineering

Melbourne School of Engineering, The University of Melbourne, Australia

Introduction

•When parameters of the noise distribution are
known, the likelihood ratio test is the uniformly
most powerful (UMP) test [2].

•Adaptive subspace detectors (ASD) generalize
matched subspace detectors (MSD) by accounting
for possible correlation [1].

•For a limited training data, applying ASD directly
on data is inefficient.

•Here we propose a detector which works in lower
dimensional space and improves the performance.

Problem Definition

Given d samples from a real and scalar time series
y(i), i = 0, 1, ..., d − 1 that is represented by the
column vector y. This vector of observations is gen-
erated by some components based on a general linear
model (GLM):

y = Hθ + n (1)
where
•H ∈ Rd×p is a known full rank matrix.

• θ ∈ Rp is unknown coordinates.

•n ∼ N (0, σ2R), where σ2 and R are unknown.

•A traning set of K signal free observations is avail-
able.

The aim of detection is to decide between the null hy-
pothesis H0 : θ = 0 and the alternative hypothesis
H1 : θ 6= 0 for a given observation y.

The Proposed Algorithm

Goal of the algorithm is to bring observed data to
a lower dimensional space to decrease the number
of unknown parameters and increase the estimation
accuracy. To achieve this goal, we assume:

y = Ud1z and n = Ud1e (2)
where z ∈ Rd1 and e ∈ Rd1 with d1 � d and Ud1

is an unknown d × d1 matrix whose columns are
orthonormal, (i.e. UT

d1
Ud1 = Id1. Now the GLM

is
z = UT

d1
Hθ + e (3)

where z is in lower dimensional space and subspace
of the signal is UT

d1
H, instead of H. To solve the

problem, we need to find the best set of projection
basis and then apply the well known ASD on the
latent variable z.
1. Estimation of Ud1: For finding the best projection
matrix, we consider two different cases of covari-
ance structures:
•R with uniform diagonal components: In this case we need
to solve the following optimization problem:

Ûd1 = arg min
Ud1

‖Ud1UT
d1
SUd1UT

d1
− S‖2

F (4)
where ‖.‖2

F shows Frobenius norm of a matrix. This op-
timization problem means that we need to regularize the
sample covariance in a way that the result gets close enough
to the sample covariance S. For a known d1 the solution is
the first d1 eigen-vectors of S.

• Ill-conditioned R: In this case study, we need to solve the
following optimization problem:
Ûd1 = arg min

Ud1

|UT
d1
SUd1| + α‖Ud1UT

d1
SUd1UT

d1
− S‖2

F

(5)
which tries to maximize the likelihood such that the esti-
mated covariance remains in the neighborhood of the sam-
ple covariance. The combination of the first a and the last
b eigen-vectors of S is the solution of problem (5) where
a + b = d1.

2. Detection: The ASD for the latent variable z is:

l(z) = zTΛ̂
−1

2PBΛ̂
−1

2z
zTΛ̂

−1
z

(6)

where B is Λ̂
−1

2UT
d1
H and Λ̂ = UT

d1
SUd1. We

name our reduced version of ASD, the adaptive
reduced subspace detector (ARSD).

Algorithm Overview

Input: y, N, H, d1, α
Estimate S and find its eigen-vectors by SVD.
Find the optimal basis functions by solving
equations (4) or (5).
Find the latent variable z and new whitened
signal subspace B.
Apply well known ASD on the z.
Output: H0 or H1

Simulation Results
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Figure 1: ROC of detectors in SNR=12 dB (a) R with uniform
diagonal components, (b) Ill-conditioned R
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Figure 2: Average and standard deviation of Frobenius norm of
difference between the actual and the estimated (a) covariance
inverse and (b) θ.
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