Introduction

- When parameters of the noise distribution are known, the likelihood ratio test is the uniformly most powerful (UMP) test [2].
- Adaptive subspace detectors (ASD) generalize matched subspace detectors (MSD) by accounting for possible correlation [1].
- For a limited training data, applying ASD directly on data is inefficient.
- Here we propose a detector which works in lower dimensional space and improves the performance.

Problem Definition

Given d samples from a real and scalar time series $\mathbf{y}(i), i = 0, 1, ..., d - 1$ that is represented by the column vector \mathbf{y} . This vector of observations is generated by some components based on a general linear model (GLM):

$$\mathbf{y} = \mathbf{H}\boldsymbol{\theta} + \mathbf{n} \tag{1}$$

where

- $\mathbf{H} \in \mathbb{R}^{d \times p}$ is a known full rank matrix.
- $\boldsymbol{\theta} \in \mathbb{R}^p$ is unknown coordinates.
- $\mathbf{n} \sim \mathcal{N}(0, \sigma^2 \mathbf{R})$, where σ^2 and \mathbf{R} are unknown.
- A training set of K signal free observations is available.

The aim of detection is to decide between the null hypothesis $\mathcal{H}_0: \boldsymbol{\theta} = \mathbf{0}$ and the alternative hypothesis $\mathcal{H}_1: \boldsymbol{\theta} \neq \mathbf{0}$ for a given observation **y**.

Adaptive Subspace Detector in High Dimensional Space with Insufficient **Training Data**

Aref Miri Rekavandi, Abd-Krim Seghouane, Robin J. Evans

Department of Electrical and Electronic Engineering Melbourne School of Engineering, The University of Melbourne, Australia

The Proposed Algorithm

Goal of the algorithm is to bring observed data to a lower dimensional space to decrease the number of unknown parameters and increase the estimation accuracy. To achieve this goal, we assume:

 $\mathbf{y} = \mathbf{U}_{d_1}\mathbf{z}$ and $\mathbf{n} = \mathbf{U}_{d_1}\mathbf{e}$ (2)where $\mathbf{z} \in \mathbb{R}^{d_1}$ and $\mathbf{e} \in \mathbb{R}^{d_1}$ with $d_1 \ll d$ and \mathbf{U}_{d_1} is an unknown $d \times d_1$ matrix whose columns are orthonormal, (i.e. $\mathbf{U}_{d_1}^T \mathbf{U}_{d_1} = \mathbf{I}_{d_1}$. Now the GLM

$$\mathbf{z} = \mathbf{U}_{d_1}^T \mathbf{H} \boldsymbol{\theta} + \mathbf{e} \tag{3}$$

where \mathbf{z} is in lower dimensional space and subspace of the signal is $\mathbf{U}_{d_1}^T \mathbf{H}$, instead of \mathbf{H} . To solve the problem, we need to find the best set of projection basis and then apply the well known ASD on the latent variable \mathbf{z} .

- **①** Estimation of \mathbf{U}_{d_1} : For finding the best projection matrix, we consider two different cases of covariance structures:
- **R** with uniform diagonal components: In this case we need to solve the following optimization problem:

$$\hat{\mathbf{U}}_{d_1} = \arg\min_{\mathbf{U}_{d_1}} \|\mathbf{U}_{d_1}\mathbf{U}_{d_1}^T\mathbf{S}\mathbf{U}_{d_1}\mathbf{U}_{d_1}^T - \mathbf{S}\|_F^2 \qquad (4)$$

where $\|.\|_{F}^{2}$ shows Frobenius norm of a matrix. This optimization problem means that we need to regularize the sample covariance in a way that the result gets close enough to the sample covariance **S**. For a known d_1 the solution is the first d_1 eigen-vectors of **S**.

• Ill-conditioned \mathbf{R} : In this case study, we need to solve the following optimization problem:

$$\hat{\mathbf{U}}_{d_1} = \arg\min_{\mathbf{U}_{d_1}} |\mathbf{U}_{d_1}^T \mathbf{S} \mathbf{U}_{d_1}| + \alpha \|\mathbf{U}_{d_1} \mathbf{U}_{d_1}^T \mathbf{S} \mathbf{U}_{d_1} \mathbf{U}_{d_1}^T - \mathbf{S}\|_F^2$$
(5)

which tries to maximize the likelihood such that the estimated covariance remains in the neighborhood of the sample covariance. The combination of the first a and the last b eigen-vectors of **S** is the solution of problem (5) where $a+b=d_1.$

2 Detection: The ASD for the latent variable \mathbf{z} is:

$$l(\mathbf{z}) = \frac{\mathbf{z}^T \hat{\boldsymbol{\Lambda}}^{-\frac{1}{2}} \mathbf{P}_{\mathbf{B}} \hat{\boldsymbol{\Lambda}}^{-\frac{1}{2}} \mathbf{z}}{\mathbf{z}^T \hat{\boldsymbol{\Lambda}}^{-1} \mathbf{z}}$$
(6)

where **B** is $\hat{\mathbf{\Lambda}}^{-\frac{1}{2}} \mathbf{U}_{d_1}^T \mathbf{H}$ and $\hat{\mathbf{\Lambda}} = \mathbf{U}_{d_1}^T \mathbf{S} \mathbf{U}_{d_1}$. We name our reduced version of ASD, the adaptive reduced subspace detector (ARSD).

Õ (a) Õ

ע

Figure 1: ROC of detectors in SNR=12 dB (a) \mathbf{R} with uniform diagonal components, (b) Ill-conditioned \mathbf{R}

50

False Alarm

20

Algorithm Overview

100

Simulation Results Cntd.

```
IX. on the problem of the most efficient tests of
statistical hypotheses.
Phil. Trans. R. Soc. Lond. A,
231(694-706):289-337, 1933.
```