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Figure 3. p vanishing moments can be imposed on the filter h[n] by replacing it with a
cascade of two filters q[n] and l[n] as shown. Only the coefficients of the filter l[n] are
learnt.

Incorporating vanishing moments:

Viewing the PRFB (Figure 1) as a convolutional autoencoder (Figure 2), thus

transforming the wavelet design problem into a learning problem.

Filterbanks generating compactly supported orthogonal wavelets are learnt,

with a given length of the filter L, and an arbitrary number of vanishing mo-

ments p  L
2 .

Vanishing moments are introduced in the learnt wavelet by restricting the filters

in our model to have p roots at ! = ⇡ (Figure 3).

PRFBs are learnt up to machine precision.
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Figure 2. PRFB as a convolutional autoencoder.
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We used the Tensorflow Python library to implement the architecture.

The Adam optimizer [4] is used to carry out gradient-descent optimization of the

cost function.

Convergence criteria:

Convergence criteria:

– The training loss goes below 10�28
; or

– No change in the training loss for more than 100 iterations.

Performance metric:

Performance metric:

– Signal-to-reconstruction-error ratio (SRER) = 20 log10

D
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E
dB.

Learnt PRFBs resulting in a wavelet

Learnt PRFBs not resulting in a wavelet
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Figure 1. A perfect reconstruction filterbank (PRFB).

Multiresolution approximation (MRA) of signals, closely related to wavelets,

finds many applications in signal analysis and image processing.

A real-world application of wavelets involves choosing one among many families

of analytically derived wavelets based on properties such as regularity, number

of vanishing moments, compact support, symmetry, and ease of implementa-

tion.

A learning framework for wavelet design allows one to pose the problem of

searching for the ‘ideal’ wavelet for a given task as an optimization problem.

An orthonormal MRA has a scaling function �(t), which satisfies the two-scale

equation: �̂(2!) = 1p
2
�̂(!)ĥ(!) [1], where the sequence h[n] satisfies:

|ĥ(!)|2 + |ĥ(! + ⇡)|2 = 2.

Under certain conditions [2], it is possible to obtain the scaling �(t) and wavelet

 (t) functions of an MRA from the filter h[n] using:
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The wavelet function  (t) generates a basis of L2(R) through its shifts and

scales.

A wavelet  (t) has p vanishing moments if,

1R
�1

tk (t)dt = 0 for k = 0, . . . , p� 1.

Wavelets having p vanishing moments annihilate polynomials up to order p� 1.

Thus, more the number of vanishing moments, sparser are the representations

of regular signals.

A wavelet MRA can be viewed as analyzing using a perfect reconstruction filter

bank (PRFB) [2], shown in Figure 1.

Perfect reconstruction conditions:

– PR1: No Distortion: ĥ⇤(ej!)ˆ̃h(ej!) + ĝ⇤(ej!)ˆ̃g(ej!) = 2,

– PR2: Alias Cancellation: ĥ⇤(ej(!+⇡))ˆ̃h(ej!) + ĝ⇤(ej(!+⇡))ˆ̃g(ej!) = 0.

A PRFB corresponds to a wavelet if, ĝ(ej!)|!=0 = 0 , ĥ(ej!)|!=⇡ = 0.

db4 wavelet [5]: Length L = 8,

p = 4 roots at ! = ⇡.

– The learnt scaling and wavelet

functions matches exactly with

the db4 scaling and wavelet

functions, respectively.

– SRER = 236.58 dB.

A learnt wavelet that does not belong

to the Daubechies family: Length

L = 8, p = 4 roots at ! = ⇡.

– The proposed approach can also

generate wavelets with an arbi-

trary number of vanishing mo-

ments.

– SRER = 228.16 dB.

Unconstrained: Four filters of

length 8 each are learnt.

– None of the filters have zero

magnitude at either ! = 0 or

! = ⇡.

– SRER = 204.83 dB.

CMF constraints: One filter of length 2
is learnt.

– ĥ(!) takes nonzero value at ! =
⇡.

– SRER = 211.40 dB.

We establish the similarity between PRFBs and convolutional autoencoders [3].

Optimization problem: h⇤, h̃⇤, g⇤, g̃⇤ = arg min
h,h̃,g,g̃

L(X;h, h̃, g, g̃).

Cost function: L(X;h, h̃, g, g̃) = 1
N

NP
i=1

kxi � x̃ik22.

Dataset: X = {xi 2 Rm}1iN , xi 2 N (0, Im⇥m).

Conjugate mirror filter (CMF) constraints: h̃[n] = h[n], g̃[n] = g[n], g[n] =
(�1)(1�n)h[(2l + 1)� n], where l 2 Z.


