

Investigations of real-time Gaussian FFTNet and parallel WaveNet neural vocoders with simple acoustic features

Takuma Okamoto¹, Tomoki Toda^{2,1}, Yoshinori Shiga¹, and Hisashi Kawai¹
¹National Institute of Information and Communications Technology, Japan, ²Nagoya University, Japan

1. Introduction

- Target: Real-time high-fidelity text-to-speech (TTS) and voice conversion (VC)
 - Conventional: DNN-based acoustic model with source-filter vocoders
 - State-of-the-art: Raw waveform generation-based speech synthesis with neural vocoders conditioned on mel-spectrograms
 - * End-to-end TTS system Tacotron 2 with autoregressive (AR) WaveNet vocoder: Human speech quality synthesis
 - ** Entire end-to-end TTS system ClariNet (Deep voice 3 + single Gaussian (SG) parallel WaveNet vocoder): Real-time high-fidelity synthesis
- Existing TTS and VC systems
 - Introducing simple acoustic features (SAF) rather then mel-spectrograms
 - # SAF: Fundamental frequency f_o and mel-cepsta for source-filter vocoders
- Purpose: Following four investigations of neural vocoders with SAF
 - SG AR WaveNet and FFTNet neural vocoders with SAF
 - 2. SG parallel WaveNet vocoder with SAF
 - 3. Noise shaping effect in SG neural vocoders with SAF
 - 4. Bandwidth extension effect in SG neural vocoders with SAF

2. Single Gaussian WaveNet and FFTNet vocoders

- Single Gaussian AR WaveNet (ClariNet teacher)
 - Single Gaussian conditional probability distribution rather than categorical one

** Predicting continuous valued mean μ_t and standard deviation σ_t for 16bit raw audio prediction

 $ReLU \rightarrow 1 \times 1 \rightarrow ReLU$

** Training criterion: Maximum likelihood estimation

$$-\log p(x_t|x_{< t}) = \frac{1}{2}\log 2\pi + \frac{1}{2}\log \sigma_t^2 + \frac{(x_t - \mu_t)^2}{2\sigma_t^2}$$

- Proposed single Gaussian FFTNet
 - FFTNet: Real-time AR neural vocoder
 - SG modeling can be directly applied to FFTNet
 - * With additional residual connections
- Noise shaping considering auditory perception (K. Tachibana et al. ICASSP 2018)
 - Improving synthesis quality by reducing spectral distortion due to prediction error in categorical WaveNet and FFTNet (T. Okamoto et al. SLT 2018)
- Investigations
 - Can SG AR WaveNet and FFTNet be trained with SAF?
 - Can noise shaping improve synthesis quality of SG neural vocoders?

3. Single Gaussian parallel WaveNet (ClariNet)

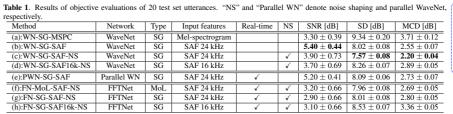
Upsampling layer

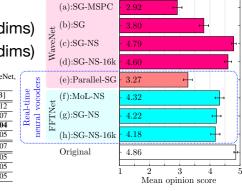
(trained in teacher)

- Knowledge distillation (teacher-student training) based on Gaussian inverse autoregressive flow (IAF)
 Acoustic feature h
 White noise Ground-truth waveform a
- Loss functions for non-AR student WaveNet
 - Regularized Kullback-Leibler (KL)-divergence
 - Spectrogram frame loss for avoiding whisper voice problem
- Comparison with conventional mixture of logistics (MoL)-based parallel WaveNet
 - KL-divergence can be analytically calculated
 - lacksquare Only initial sampling $z^{(0)}$ is sufficient
- Investigation
 - Can SG parallel WaveNet be trained with SAF instead of mel-spectrograms?

4. Experiments

- Corpus: Japanese male speech (3.7 hours, fs = 24 kHz)
- Acoustic features
 - MSPC: 80-dim. mel-spectrograms (125 to 7600 Hz)
 - SAF 24k Hz: $\log f_o$ + vuv + 35-dim. mel-cepstra (37-dims)
 - SAF 16k Hz: $\log f_o$ + vuv + 25-dim. mel-cepstra (27-dims)





Student WaveNet

Teacher WaveNet

(autoregressive)

 $oldsymbol{x}_{a}(=oldsymbol{z}^{(n)}=oldsymbol{z}^{(0)}\odotoldsymbol{\sigma}_{q}+oldsymbol{\mu}_{q})$

 $\frac{1}{B} \left\| \left| \text{STFT}(\boldsymbol{x}_q) \right| - \left| \text{STFT}(\boldsymbol{x}) \right| \right\|_2^2$

5. Extended investigations

- Using a larger amount of training data (27 hours)
 - Synthesized quality can be improved
- Multi-resolution frame loss (MRFL) in parallel WaveNet

$$\sum_{i=1}^{3} \frac{1}{B_i} \||\text{STFT}(\boldsymbol{x}_q)| - |\text{STFT}(\boldsymbol{x})|\|_2^2$$

$$B_1 = 1025, \ B_2 = 513, \ B_3 = 257$$

- Synthesized quality can be slightly improved
- WaveRNN and WaveGlow neural vocoders with SAF
 - Successfully synthesize high-quality speech waveforms
 - Demo samples are available in the poster session (8:30-11:30 17th May)

