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1. Introduction

M Target: Real-time high-fidelity text-to-speech (TTS) and voice conversion (VC)
B Conventional: DNN-based acoustic model with source-filter vocoders
B State-of-the-art: Raw waveform generation-based speech synthesis with neural

vocoders conditioned on mel-spectrograms

¥ End-to-end TTS system Tacotron 2 with autoregressive (AR) WaveNet vocoder:
Human speech quality synthesis

% Entire end-to-end TTS system ClariNet (Deep voice 3 + single Gaussian (SG)
parallel WaveNet vocoder): Real-time high-fidelity synthesis

M Existing TTS and VC systems
B Introducing simple acoustic features (SAF) rather then mel-spectrograms

% SAF: Fundamental frequency f, and mel-cepsta for source-filter vocoders

B Purpose: Following four investigations of neural vocoders with SAF
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. SG AR WaveNet and FFTNet neural vocoders with SAF

. SG parallel WaveNet vocoder with SAF

Noise shaping effect in SG neural vocoders with SAF

. Bandwidth extension effect in SG neural vocoders with SAF

2. Single Gaussian WaveNet and FFTNet vocoders

B Single Gaussian AR WaveNet (ClariNet teacher)
M Single Gaussian conditional probability distribution rather than categorical one

B Proposed single Gaussian FFTNet
B FFTNet: Real-time AR neural vocoder
B SG modeling can be directly applied to FFTNet

B Noise shaping considering auditory perception
(K. Tachibana et al. ICASSP 2018) o [ oo ]
M Improving synthesis quality by reducing spectral Ot Iw )
distortion due to prediction error in categorical i e 2 e
WaveNet and FFTNet (T. Okamoto et al. SLT 2018) | 11 | ZL. —
M Investigations (ot o o i)
B Can SG AR WaveNet and FFTNet be trained with SAF? Y —

¥ Predicting continuous valued mean /¢ and standard deviation o+ for 16bit raw
audio prediction o
¥ Training criterion: Maximum likelihood estimation
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¥ With additional residual connections

B Can noise shaping improve synthesis quality of SG neural vocoders?

3. Single Gaussian parallel WaveNet (ClariNet)
B Knowledge distillation (teacher-student training) based on Gaussian inverse
autoregressive flow (IAF)
M Loss functions for non-AR student WaveNet
B Regularized Kullback-Leibler (KL)-divergence (t[fﬁffﬂﬁiiiﬁ)
B Spectrogram frame loss for avoiding
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M KL-divergence can be analytically calculated

B Only initial sampling 2 is sufficient Tt KUl + L [ [5157(a) - e [
B Investigation ) “’

B Can SG parallel WaveNet be trained with SAF instead of mel-spectrograms?

4. Experiments

B Corpus: Japanese male speech (3.7 hours, fs = 24 kHz)

B Acoustic features
B MSPC: 80-dim. mel-spectrograms (125 to 7600 Hz) (2):SG-MSPC
B SAF 24k Hz:log f, + vuv + 35-dim. mel-cepstra (37-dims)  ®5¢
B SAF 16k Hz:log f, + vuv + 25-dim. mel-cepstra (27-dims) (056

= (d):SG-NS-16k
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Table 1 IResul(a of objective evaluations of 20 test set utterances. “NS” and “Parallel WN” denote noise shaping and parallel WaveNet, ® (e):Parallel-SG [ 3.27

respectively. HI) H
Method [ Network | Type | Input features | Real-time [ NS [ SNR[dB] [ SD[dB] [ MCD [dB] = (f):MoL-NS 4.32 +
(a):WN-SG-MSPC WaveNet SG | Mel-spectrogram 330+0.39 | 9.34+0.20 | 3.71 £0.12 E
(b):WN-SG-SAF WaveNet SG SAF 24 kHz 5.40 +0.44 | 8.02+0.08 | 2.55+0.07 & (g):SG-NS 4.22 +
(c):WN-SG-SAF-NS WaveNet SG SAF 24 kHz v [390+0.73 | 7.57 £0.08 | 2.20 £ 0.04 : E] E
(d):WN-SG-SAF16k-NS WaveNet SG SAF 16 kHz v [ 370+0.69 | 8.26 £0.07 | 2.89 +0.05 E (h):SG-NS-16k [ 4.18 +
(e):PWN-SG-SAF [ Parallel WN | SG SAF 24 kHz v [ 520£0.41 [ 809 £0.06 | 273 £0.07 A Original 4 1
(D:FN-MoL-SAF-NS FFTNet | MoL | SAF24kHz 7 7 [ 320 £0.66 | 7.96 £ 008 | 2.60 £ 0.05 rigina 86 +
(2):FN-SG-SAF-NS FFTNet SG SAF 24 kHz v v [ 290+ 0.66 | 8.01 £0.08 | 2.80 + 0.05 1 : p) 3 1 5
(h):FN-SG-SAF16k-NS FFTNet SG SAF 16 kHz v v [ 3.104+0.66 | 8.53 £0.07 | 3.36 + 0.05 Mean opinion score

5. Extended investigations

B Using a larger amount of training data (27_hours)

(a): AR WaveNet (3.7h)
B Synthesized quality can be improved by AR WaveNet (271
[ | Multi-resglution frame loss (MRFL) in parallel WaveNet . . ..oveoxs om)
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2 (d): Parallel WN (3.7h) 3.12
; 7, IISTFT ()| — | STFT ()] B
Bl — 1025’ 32 — 513, B3 = 9257 (f): Parallel WN-MRFL (27h)f 3.71
B Synthesized quality can be slightly improved Original 456 }
B WaveRNN and WaveGlow neural vocoders with SAF L e s

Mean opinion score

B Successfully synthesize high-quality speech waveforms
% Demo samples are available in the poster session (8:30-11:30 17th May)
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