JSR-NET A DEEP NETWORK FOR JOINT SPATIAL-RADON DOMAIN CT **RECONSTRUCTION FROM INCOMPLETE DATA**

Haimiao Zhang^{*} & Bin Dong^{*} & Baodong Liu^{† ‡}

*BICMR, Peking University

[†]Chinese Academy of Sciences,

[‡]University of Chinese Academy of Sciences

hmzhang@pku.edu.cn;dongbin@math.pku.edu.cn;liubd@ihep.ac.cn

INTRODUCTION

CT image reconstruction from incomplete data, such as sparse views and limited angle reconstruction, is an important and challenging problem in medical imaging. This work proposes a new deep convolutional neural network (CNN), called JSR-Net, that jointly reconstructs CT image and the associated Radon domain projection. JSR-Net combines the traditional model-based approach with deep architecture design of deep learning. A hybrid loss function is adopted to improve the performance of JSR-Net.

HIGHLIGHTS

1. A new end-to-end deep model for CT image reconstruction.

EXPERIMENTS

Sparse view CT image reconstruction

北京国际数学研究中心 **BEIJING INTERNATIONAL CENTER FOR** MATHEMATICAL RESEARCH

2. Uniform model for sparse-view CT and limited-angle CT.

3. Intuitive interpretation of the deep neural network(DNN) by unrolling dynamics.

4. A new hybrid loss function-contains structure similarity and semantic segmentation loss.

MAIN IDEA

Figure 1: From handcrafted modeling to deep modeling.

MATERIALS AND METHODS

JSR model

The Joint Spatial-Radon domain image reconstruction(JSR) model [2] is

$$\min_{\boldsymbol{u},\boldsymbol{f}} \frac{\boldsymbol{\mathcal{F}}(\boldsymbol{u},\boldsymbol{f},\boldsymbol{Y}) + \|\boldsymbol{\lambda}_1 \cdot \boldsymbol{W}_1 \boldsymbol{u}\|_{1,2} + \|\boldsymbol{\lambda}_2 \cdot \boldsymbol{W}_2 \boldsymbol{f}\|_{1,2},$$

where the data fidelity term is defined by

$$\mathcal{F}(\boldsymbol{u},\boldsymbol{f},\boldsymbol{Y}) = \frac{1}{2} \|R_{\boldsymbol{\Gamma}^c}(\boldsymbol{f}-\boldsymbol{Y})\|^2 + \frac{\alpha}{2} \|R_{\boldsymbol{\Gamma}}(\boldsymbol{\mathcal{P}}\boldsymbol{u}-\boldsymbol{f})\|^2 + \frac{\gamma}{2} \|R_{\boldsymbol{\Gamma}^c}(\boldsymbol{\mathcal{P}}\boldsymbol{u}-\boldsymbol{Y})\|^2$$

Notations					
$R_{oldsymbol{\Gamma}}$	restriction operator with respect to missing data region Γ				
Γ^c	complement of Γ				
\mathcal{P}	Radon transform				
Y	measured projection data				
$W_i, i = 1, 2$	wavelet frame transform				
f	repaired projection data				
<i>u</i>	desired CT image				

Figure 1. Sparse view CT image reconstruction. (a)Ground truth; (b)FBP; (c)PD-Net [1], ℓ_2 ; (d)PD-Net, SS2; (e)JSR model; (f) JSR-Net, ℓ_2 ; (g)JSR-Net, SS2; (h)Error map of PD-Net, SS2; (i)Error map of JSR-Net, SS2.

Limited angle CT image reconstruction

Solution of the JSR model is obtained by ADMM algorithm as the following: Algorithm for JSR model

1: Initialization: $b_1^0 = b_2^0 = 0$ 2: While stop criterion is not met do 3: update *u*: $\boldsymbol{u}^{k+1} = \mathcal{A}^{-1} \left[\alpha \boldsymbol{\mathcal{P}}^{\top} R_{\boldsymbol{\Gamma}} \boldsymbol{f}^{k} + \boldsymbol{\mathcal{B}} + \mu_{1} \boldsymbol{W}_{1}^{\top} (\boldsymbol{d}_{1}^{k} - \boldsymbol{b}_{1}^{k}) \right]$ $oldsymbol{d}_1^{k+1} = \mathcal{T}_{oldsymbol{\lambda}_1/\mu_1}(oldsymbol{W}_1oldsymbol{u}^{k+1} + oldsymbol{b}_1^k)$ $\boldsymbol{b}_{1}^{k+1} = \boldsymbol{b}_{1}^{k} + (\boldsymbol{W}_{1}\boldsymbol{u}^{k+1} - \boldsymbol{d}_{1}^{k+1})$ where $\mathcal{A} = P^{\top}(\alpha R_{\Gamma} + \gamma R_{\Gamma^c})\mathcal{P} + \mu_1$ and $\mathcal{B} = \gamma \mathcal{P}^{\top} R_{\Gamma^c} \mathcal{Y}$ 4: update *f*: $\boldsymbol{f}^{k+1} = \mathcal{C}^{-1} \left[\alpha R_{\boldsymbol{\Gamma}} \boldsymbol{\mathcal{P}} \boldsymbol{u}^{k+1} + \mathcal{D} + \mu_2 \boldsymbol{W}_2^{\top} (\boldsymbol{d}_2^k - \boldsymbol{b}_2^k) \right]$ $oldsymbol{d}_2^{k+1} = \mathcal{T}_{oldsymbol{\lambda}_2/\mu_2}(oldsymbol{W}_2oldsymbol{f}^{k+1} + oldsymbol{b}_2^k)$ $\boldsymbol{b}_{2}^{k+1} = \boldsymbol{b}_{2}^{k} + (\boldsymbol{W}_{2}f^{k+1} - \boldsymbol{d}_{2}^{k+1})$ where $C = \alpha R_{\Gamma} + R_{\Gamma^c} + \mu_2$ and $D = R_{\Gamma^c} Y$. 5: end while 6: Output: u^*

JSR-Net

Based on the Algorithm for JSR model, JSR-Net is designed as the following: **Architecture of JSR-Net**

1: Initialization: $\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{u}, \boldsymbol{f}, \boldsymbol{W}_1, \boldsymbol{W}_2, \mathcal{N}(\cdot)$

2: For k=0:N

3: block *u*:

$$\boldsymbol{u}^{k+1} = \boldsymbol{\mathcal{N}}_{\boldsymbol{u}}(\left[\boldsymbol{\mathcal{P}}^{\top}\boldsymbol{R}_{\boldsymbol{\Gamma}}\boldsymbol{f}^{k},\boldsymbol{\mathcal{B}},\boldsymbol{W}_{1}^{\top}(\boldsymbol{d}_{1}^{k}-\boldsymbol{b}_{1}^{k})\right];\boldsymbol{\Theta}_{\boldsymbol{u}}^{\boldsymbol{k}})$$

Figure 2. Limited angle CT image reconstruction. (a)Ground truth; (b)FBP; (c)PD-Net [1], ℓ_2 ; (d)PD-Net, SS2; (e)JSR model; (f) JSR-Net, ℓ_2 ; (g)JSR-Net, SS2; (h)Error map of PD-Net, SS2; (i)Error map of JSR-Net, SS2.

Quantitative results

(1)

Tacks	Models	Qual. Meas.			
Tasks		SSIM	PSNR	NRMSE	MSE
	FBP	0.6173	17.25	1.078	0.0189
	PD-Net , ℓ_2	0.8709	28.54	0.1453	0.0014
Sporse view CT	PD-Net, SS2	0.8844	30.68	0.1134	0.0009
Sparse view CT	JSR model	0.8088	26.64	0.1866	0.0022
	JSR-Net, ℓ_2	0.8271	27.68	0.1604	0.0017
	JSR-Net,SS2	0.9081	31.59	0.1022	0.0007
	FBP	0.4826	15.91	1.5143	0.0257
	PD-Net , ℓ_2	0.8778	26.43	0.1852	0.0023
Limited angle CT	PD-Net, SS2	0.88	27.44	0.1648	0.0018
	JSR model	0.8317	25.38	0.2174	0.0029
	JSR-Net, ℓ_2	0.7337	23.72	0.253	0.0042
	JSR-Net, SS2	0.9076	27.31	0.1674	0.0019

Future work

. Designing new loss function that is more effective in preserving tiny structures.

$$d_{1}^{k+1} = \mathcal{N}_{d_{1}}(W_{1}u^{k+1} + b_{1}^{k}; \Theta_{d_{1}}^{k})$$

$$b_{1}^{k+1} = b_{1}^{k} + (W_{1}u^{k+1} - d_{1}^{k+1})$$

where $\mathcal{B} = \gamma \mathcal{P}^{\top} R_{\Gamma^{c}} Y$
4: block f :

$$f^{k+1} = \mathcal{N}_{f}(\left[R_{\Gamma} \mathcal{P}u^{k+1}, \mathcal{D}, W_{2}^{\top}(d_{2}^{k} - b_{2}^{k})\right]; \Theta_{f}^{k})$$

$$d_{2}^{k+1} = \mathcal{N}_{d_{2}}(W_{2}f^{k+1} + b_{2}^{k}; \Theta_{d_{2}}^{k})$$

$$b_{2}^{k+1} = b_{2}^{k} + (W_{2}f^{k+1} - d_{2}^{k+1})$$

where $\mathcal{D} = R_{\Gamma^{c}}Y$.
5: end for
6: Output: u^{*}

NETWORK TRAINING

Loss function

Structure-Semantic- ℓ_2 (SS2) hybrid loss function is defined as

 $\mathcal{L}_{SS2} = \theta_1 \mathcal{L}_{SSIM} + \mathcal{L}_{MSE} + \theta_3 \mathcal{L}_{sem},$

2. Designing new network architecture.

3. Extending JSR-Net to interior/exterior CT.

4. Extending JSR-Net to 3D Cone beam CT imaging.

References

(2)

[1] Jonas Adler and O. Öktem. *IEEE transactions on medical imaging*, 37(6):1322–1332, 2018. [2] Bin Dong et.al. Journal of Scientific Computing, 54(2-3):333–349, 2013.

Acknowledgements

Haimiao Zhang is funded by China Postdoctoral Science Foundation under grant 2018M641056. Bin Dong is supported by NSFC grant 11831002. Baodong Liu is supported by the National Key Scientific Instrument and Equipment Development Project 2017YFF0107200.