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Question Raised
With labeled obs.

log p1(x1) . . . pn(xn)

q1(x1) . . . qn(xn)

H1>
<
H0

γ

With unlabeled obs.
pi(⋅) qi(⋅) known, but
. . . who goes with whom?
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Application Areas & Motivation
Unlabeled SP: Credit to [1] for initiating the field of unlabeled signal processing

Applications in: Spoofing attacks to wireless ad-hoc nets or smart grids [2, 3]; big
data scenarios (stripping time/space labels can be attractive [4]); image processing [5];
genome research [6]; archaeology [7]; communication over permutation channels [8];
molecular communications [9]. Further can be found in: [10, 11, 12, 13].

Motivational example from Social Sensing:
● Following the initiation of an event meant to be covert, users take consequent

actions (visit specific webpages, post comments, contact friends, . . . ).
● Users are profiled: A network analyzer knows the probability that each user takes

an action as consequence of each hidden event
⇒ event can be therefrom inferred

● What if users’ actions are anonymized? Can the covert event be still inferred by
users’ profiles? And how powerful is such a labeled-unaware network analyzer?

At more theoretical level: In a detection problem, how much information is
contained in the observation values, and how much in their labels?
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Formalization
Labeled observations

(Labeled) Binary Observations: Xn ∼
n

∏
i=1
rxii (1 − ri)1−xi, Xi ∈ {0,1}

Statistical Test: H1 ∶ ri = pi = P1(Xi = 1),
H0 ∶ ri = qi = P0(Xi = 1), i = 1,2, . . . , n

Solution: LLR
n

∑
i=1
xi log pi

qi
+ (1 − xi) log 1 − pi

1 − qi
H1>
<
H0

γ

Unlabeled observations

Unlabeled Binary Observations: Xn ∼
n

∏
i=1
r
xπ(i)
i (1 − ri)1−xπ(i), π unknown

What test? GLRT is a possibility: replace π by its ML estimate π̂
n

∑

i=1
[xπ̂1(i) log pi + (1 − xπ̂1(i)) log(1 − pi)] −

n

∑

i=1
[xπ̂0(i) log qi + (1 − xπ̂0(i)) log(1 − qi)]
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GLRT (1/2)

ML estimate under H1: π̂1 = arg max
π

log
n

∏
i=1
p
xπ(i)
i (1 − pi)1−xπ(i)

⇔ Find the best path over the trellis

(
log p1 log p2 log p3 . . . log pn

log(1 − p1) log(1 − p2) log(1 − p3) . . . log(1 − pn))

ML estimate under H0: π̂0 = arg max
π

log
n

∏
i=1
q
xπ(i)
i (1 − qi)1−xπ(i)

⇔ Find the best path over the trellis

(
log q1 log q2 log q3 . . . log qn

log(1 − q1) log(1 − q2) log(1 − q3) . . . log(1 − qn))
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GLRT (2/2)

With arbitrary alphabets (known facts)
Algorithmic approach via assignment problem
Hungarian (Munkres), JVC and auction algorithms have been advocated
No closed-form solution; complexity is an issue

With binary alphabets
Result 1. The GLRT statistic is given by

SGLRT =
kx

∑
i=1

log
p(i)

q(i)
+

n

∑
i=kx+1

log
1 − p(i)
1 − q(i)

kx = number of ones
p(i) = i-th largest element of (p1, p2, . . . , pn)
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Detectors A and B

With arbitrary alphabets (known facts)
Two greedy algorithms have been proposed as surrogates for the GLRT
● Detector A sequentially matches observations to “most convenient” distribution:

Greedy search of best path over the trellis
● Detector B first finds the best sequence of distributions, then sequentially adapts

the sequence to observations:
Greedy adaptation of best sequence to observations

Complexity upper bounded by O(n2)

Relative merits & actual complexity remain open issues

With binary alphabets
Result 2. Detectors A and B coincide, and both are equivalent to GLRT
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ULR Detector (1/2)
With arbitrary alphabets (∣X ∣ > 2):

X̃n = (X̃1, . . . , X̃n), X̃i iid ∼ p̄ = 1
n ∑

n
i=1 pi or X̃i iid ∼ q̄ = 1

n ∑
n
i=1 qi

tx̃n type of iid observations

● SLLN tX̃n(x)→ p̄(x) ae under H1, tX̃n(x)→ q̄(x) ae under H0

txn type of observations

● VAR1,0[I(Xi = x)] = ri(x)(1 − ri(x)),
∞
∑

i=1
VAR1,0[I(Xi = x)]/i

2
≤
π2

24
<∞

● ⇒
1
n

n

∑

i=1
I(Xi = x) −

1
n

n

∑

i=1
E1,0[I(Xi = x)]→ 0

● ⇒ ∀ε > 0 and n sufficiently large ∣txn(x) − tx̃n(x)∣ < ε ae
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ULR Detector (2/2)
With arbitrary alphabets (known facts)

Type vector tx and type vector from iid obs. tx̃, converge to the same
constant vector

LLR for iid obs.: ∑
x∈X

tx̃(x)
p̄(x)

q̄(x)
ULR [12]: ∑

x∈X
tx(x)

p̄(x)

q̄(x)

By simulations: nice performance in many cases (perhaps unexpectedly)
(Analytical) Performance assessment is an open issue
Relative merit wrt GLRT, Detector A, Detector B, mostly unexplored

With binary alphabets
Result 3. ULR reduces to a simple counting detector:

SULR = sign(p̄ − q̄) kx
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Finite No. of Classes
Suppose:

p = (pc1, . . . , pc1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n1

, pc2, . . . , pc2,
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n2

. . . . . . , pcm, . . . , pcm
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

nm

)

q = ( qc1, . . . , qc1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n1

, qc2, . . . , qc2,
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n2

. . . . . . , qcm, . . . , qcm
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

nm

)

Detector for shuffled bits:

kX =
n1

∑
i=1
Xi +

n1+n2

∑
i=n1+1

Xi + ⋅ ⋅ ⋅ +
n

∑

∑m−1
k=1 nk+1

Xi . By CLT arguments (n` large)

Result 4

SCLT = (
kx − nq̄

σ0
)

2
− (

kx − np̄

σ1
)

2 where σ2
1 =

m

∑

`=1
n` pc` (1 − pc`)

– boils down to ULR for σ1 = σ0
– works beyond the m-class setting
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Simulation Results (1/3)
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Left: m = 2 classes, n1 = n2 = 100. qc1 = qc2 = .5. Following the arrows: (pc1 = .9, pc2 = .1),
(pc1 = .95, pc2 = .05), and (pc1 = .99, pc2 = .01).
Middle: Same as in Left, except: (pc1 = .9, pc2 = .1), (pc1 = .95, pc2 = .1), (pc1 = .99, pc2 = .1).
Right: m = 10 classes, each with n/m entries, and n = 50, 100, 200. qci, generated uniformly at
random ∈ (.45, .55), pci, uniformly at random ∈ (δ, δ + 0.1).
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Simulation Results (2/3)
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Left: m = 2 classes, n1 = n2 = 10. qc1 = qc1 = .5, pc1 = 1 − ε, pc2 = 1/2 − ε.
Right: (q1, . . . , qn) grows linearly from q1 = 0.3 to qn = 0.7, (p1, . . . , pn) grows linearly from
p1 = 0.3 +∆ to pn = 0.7 +∆, where ∆ = 0.01, 0.05, and n = 10, 102, 103.
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Simulation Results (3/3)
Two classes (optimum easily computable):
● H0: balan. iid vs H1: half obs. P1(Xi = 1) = 1 − ε, half P1(Xi = 1) = ε

CLT same as OPT, GLRT quite close to OPT, ULR useless
● H0: balan. iid vs H1: half obs. P1(Xi = 1) = ε, half P1(Xi = 1) = 1

2 − ε
CLT & ULR same as OPT, GLRT useless

General considerations:
● GLRT should be used only after checking its unbiasedness
● ULR is expected to work well, unless ∣p̄ − q̄∣ is too small
● CLT is recommended also in challenging scenarios

General trends:
● Performance improves with n and with distribution “distance” . . .
● . . . in primis: how p̄ is far from q̄, in secundis how σ1 is far from σ0
● p̄ = q̄ ⇒ Pm, Pd scale sub-exponentially with n→∞
● p̄ ≈ q̄ ⇒ Performance only depends on: ∣p̄ − q̄∣, σ1, σ0

13 / 18



Conclusions (1/2)
GLRT with ∣X ∣ > 2

GLRT boils down to solving an assignment problem

There are cases in which GLRT is useless
● Non consistent: the search space grows more than exponentially fast with n

Detectors A and B: Relative merits? Performance? Relation to GLRT?

GLRT with Binary Observations

● Simple closed-form expression (performance assessment possible)

● Modest computational cost

● Same of Detectors A and B

● There exist detection problems in which GLRT is biased (more in [13])
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Conclusions (2/2)
ULR

Computationally very efficient

Works when ∣p̄ − q̄∣ is not too small

With ∣X ∣ > 2: Performance assessment? Relative merits wrt other det.?

With binary observations: boils down to a counting detector

CLT for m-class binary observations

Good trade off between complexity/performance

Exploits diversity in mean and in variance
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Coming Soon . . . (1/2)

With labeled obs.
Fundamental limit:
error exponent Ω(α)

With unlabeled obs.
Fundamental limit?
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Coming Soon . . . (2/2)
With arbitrary alphabets (known facts)
ψ1(λ) = limn→∞

1
n ∑

n
i=1 log∑x∈X pi(x)eλ(x)

Ψ1(ω) = LT[ψ1(λ)] = supλ∈R∣X ∣−1{∑x∈X ′ λ(x)ω(x) − ψ1(λ)}

Ω(α) = inf
ω∈P(X )∶Ψ0(ω)<α

Ψ1(ω)

With binary alphabets (and low-detectability regime)

ω 

Ψ
0 (ω

) Ψ
1(
ω

) 

Ω
LD

(α
1)	

α 1
	

α 2
	

Ω
LD

(α
2)	

p	q	

Ω(α) ≈
([∣p̄ − q̄∣ −

√
2σ̄2

0 α ]
+
)

2

2σ̄2
1

with σ̄2
1 = lim

n→∞

1
n

n

∑

i=1
pi(1 − pi)
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