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Audiovisual speaker tracking

Prediction step

System dynamics:

xk = Axk−1 + vk, vk = N (0, Q)

xk−1xk

x̂k|k−1

p(xk |YA,k−1, YV,k−1) =

∫
p(xk | xk−1)︸ ︷︷ ︸
Dynamic model

p(xk−1 |YA,k−1, YV,k−1)︸ ︷︷ ︸
Prior

dxk−1
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Audiovisual speaker tracking

Observation

Observation model:

yk =
[
yA,k yV,k

]T
= Cxk +wk

wk = N (0, R), R =

[
RAA RAV

RVA RVV

]
xk

x̂k|k−1

yV,k

yA,k
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Audiovisual speaker tracking

Update step (standard Kalman filter)

Observation model:

yk =
[
yA,k yV,k

]T
= Cxk +wk

wk = N (0, R), R =

[
RAA RAV

RVA RVV

]
xk

x̂EKF,k

yV,k

yA,k

p(xk |YA,k, YV,k) ∝ p(xk |YA,k−1, YV,k−1) p(yA,k, yV,k | xk)︸ ︷︷ ︸
Sensor model
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Audiovisual speaker tracking

Update step (Kalman filter with dynamic stream weights1)

Observation model:

yA,k = CAxk +wA,k, wA,k = N (0, RAA)

yV,k = CVxk +wV,k, wV,k = N (0, RVV)

xk

x̂DSW,k
x̂EKF,k

yV,k

yA,k

p(xk |YA,k, YV,k) ∝ p(xk |YA,k−1, YV,k−1) p(yA,k | xk)λk︸ ︷︷ ︸
Acoustic model

p(yV,k | xk)1−λk︸ ︷︷ ︸
Visual model

1
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Ahmed Hussen Abdelaziz, Student Member, IEEE, Steffen Zeiler, and Dorothea Kolossa, Senior Member, IEEEAbstract—With the increasing use of multimedia data in com-

nication technologies, the idea of employing visual information

automatic speech recognition (ASR) has recently gathered mo-

ntum. In conjunction with the acoustical information, the visual

a enhances the recognition performance and improves the ro-

ness of ASR systems in noisy and reverberant environments.

udio-visual systems, dynamic weighting of audio and video

ams according to their instantaneous con�dence is essential

eliably and systematically achieving high performance. In this

r, we present a complete framework that allows blind estima-

f dynamic streamweights for audio-visual speech recognition

on coupled hidden Markov models (CHMMs). As a stream

t estimator, we consider using multilayer perceptrons and

c functions to map multidimensional reliability measure

es to audiovisual stream weights. Training the parameters

stream weight estimator requires numerous input-output

of reliability measure features and their corresponding

weights. We estimate these stream weights based on oracle

dge using an expectation maximization algorithm. We

31-dimensional feature vectors that combine model-based

nal-based reliability measures as inputs to the stream

estimator. During decoding, the trained stream weight

r is used to blindly estimate stream weights. The entire

rk is evaluated using the Grid audio-visual corpus and

d to state-of-the-art stream weight estimation strategies.

osed framework signi�cantly enhances the performance

dio-visual ASR system in all examined test conditions.Terms—Audio-visual speech recognition, coupled hidden
model, logistic regression, multilayer perceptron, relia-
sure, stream weight.

to the massive corruption of speech signals in real-world envi-

ronments, which leads to a rapid degradation in the ASR per-

formance under adverse acoustical conditions [1]. A range of

front-end and back-end methods [2], [3] have been proposed

in order to improve the ASR performance in the presence of

noise. One of these methods that has recently attracted research

interest is using visual features encoding the appearance and

shape of the speaker’s mouth in conjunction with the conven-

tional acoustical features. The motivation of this approach is

that the visual features are independent of the acoustical envi-

ronment while relevant to the speech production process.
In order to model the speech production process using both

the acoustical and visual information, many models have been

proposed. These models differ regarding the point where the

fusion of the audio and video streams takes place. For example,

in direct integration (DI) models, the fusion is applied on the

feature level by simply concatenating the audio and visual

features [4], or by combining the features in a more complex

manner using techniques like dominant or motor recording

[5], [6]. Alternatively, separate integration (SI) models [6],

[7] integrate the audio and video modality at the classier

output level. The fusion level in SI models varies according

to the denition of the classier output, e.g., phrase, word, or

phoneme level.
Between these two

Learning dynamic stream weights

Standard approach: Supervised training with oracle dynamic stream weights
.

Oracle DSW
estimation

Parameter
estimation
h(zk |w)

λ⋆

Audio features
Video features

Reliability measures

Transcription

w
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Learning dynamic stream weights

Proposed approach: Training with natural evolution strategies

Black-box
optimization
h(zk |w)Realiability measures

Speaker positions
Video features
Audio features

w

.

▶ No oracle information required.

▶ Flexible choice of loss/fitness function.
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Learning dynamic stream weights

Training procedure

Dataset

p(w |θ)

h(zk | ŵ1) · · · h(zk | ŵN)

w1 wN

{zk}Kk=1

DSW-KF · · · DSW-KF

{λ̂(1)
k }Kk=1 {λ̂(N)

k }Kk=1

{yk}Kk=1

f(xk, x̂
(1)
k ) · · · f(xk, x̂

(N)
k )

{x̂(1)k }Kk=1 {x̂(N)k }Kk=1

{xk}Kk=1

∇θJ(θ) ≈ 1
N
∑N

n=1 f(xk, x̂
(n)
k )∇θ log{p(wn |θ)}

U
pdate

param
eters
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Learning dynamic stream weights

Implementation

▶ Reliability measures: instantaneous estimated a-priori SNR, acoustic and visual
observation log-likelihoods2.

▶ Evaluation of two different DSW prediction models: logistic function and
fully-connected feed-forward neural network.

▶ Separable natural evolution strategies (sNES) as optimizer:
p(w |θ) = N

(
w |µw, diag(σw)

)
▶ Fitness function allowing direct optimization of instantaneous localization error:

f(w) = − 1
M
∑M

m=1
1
Km

∑Km
k=1

(
ϕ
(m)
k − ϕ̂

(m)
k (w)

)2

2
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Evaluation

Experimental setup

▶ Front-end: DPD-MUSIC3 for acoustic localization,
Viola-Jones4 algorithm for visual localization.

▶ Dataset of audiovisual recordings in an office
environment (T60 ≈ 350ms) using the Kinect.

▶ Constant velocity dynamics model.

▶ Baseline: Stream weight prediction models
trained on oracle DSWs with SGD (same
architecture)

3
Nadiri et al.: Localization of multiple speakers under high reverberation using a spherical microphone array and the direct-path dominance test, 2014

4
P. Viola, M. Jones: Rapid object detection using a boosted cascade of simple features, 2001
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Evaluation

Results
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Statistical significance: ⋆ for p < 0.05 and ⋆⋆ for p < 0.01
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Conclusions and outlook

▶ A DSW-based audiovisual speaker tracking system can benefit from black-box
optimization approaches like NES (no oracle DSWs required).

▶ Ideas for future work:
▶ Making the system trainable end-to-end.
▶ Joint optimization of DSW estimators and model parameters.
▶ Extension to multi-speaker scenarios.

Thank you for your attention!
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