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Motivation

• Certain regions of the audio can be more important than the rest.

• Conventional approaches (i-vector and x-vector) ignore the sequence information.

• Previous end-to-end approaches work well only on short durations (3 sec) [1].

Proposed HGRU Model

• Hierarchically builds a sequence of 1 sec representations.

• Attention module computes a weighted average of this sequence to output utterance level em-
bedding.

• Duration dependent fully connected layers compute posteriors from the embedding.

Figure 1: Proposed HGRU Model

Figure 2: Attention Module
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Experiments

Cluster Target Languages Hours

Arabic

Egyptian Arabic (ara-arz)
Iraqi Arabic (ara-acm)
Levantine Arabic (ara-apc)
Maghrebi Arabic (ara-ary)

190.9
130.8
440.7
81.8

Chinese
Mandarin (zho-cmn)
Min Nan (zho-nan)

379.4
13.3

English
British English (eng-gbr)
General American English (eng-usg)

4.8
327.7

Slavic
Polish (qsl-pol)
Russian (qsl-rus)

59.3
69.5

Iberian

Caribbean Spanish (spa-car)
European Spanish (spa-eur)
Latin American Continental Spanish (spa-lac)
Brazilian Portuguese (por-brz)

166.3
24.7
175.9
4.1

Table 1: LRE17 training set : target languages, language
clusters and total number of hours.

• Experiments performed on LRE2017 dataset,
it includes 5 major language clusters with 14
target dialects.

• Table below shows results on clean evaluation
data in terms of accuracy in % (and Cavg in
parenthesis).

Dur. (sec) ivec [2] LSTM [1] HGRU
3 53.8 (0.53) 54.7 (0.55) 55.1 (0.55)

10 72.3 (0.27) 72.1 (0.35) 74.1 (0.32)
30 83.0 (0.13) 76.1 (0.28) 83.0 (0.23)

1000 56.2 (0.54) 42.8 (0.79) 53.5 (0.62)
overall 67.9 (0.37) 64.3 (0.48) 68.5 (0.42)

Table 2: Results on clean LRE evaluation data

Figure 3: Partial noisy (10 sec.) and Multi speaker (3 sec.
+ 3 sec.) results

Figure 4: Noisy (10 sec.) results

• Comparable results when noise levels are high (5 dB and 10 dB SNR).

• Significantly outperforms baseline when the audio has non-stationary characteristics like
changing speaker or non-stationary noise levels.

Attention Analysis

• In the transcription, green shade highlights the parts where attention was focused.

• Vocalisations like ’aa’, ’umm’ were not given importance.

Figure 5: Attention on a clean British English audio file with transcript

Figure 6: Attention weights of a partially noised audio file

• Noise (10 dB SNR) was added to the first
5 sec of the utterance to simulate non-
stationary noisy environment.

• No preprocessing with speech activity de-
tector.

• HGRU was able to redistribute it’s atten-
tion weights.

• Attention weights reduced in the noisy re-
gions while an increase in strength is ob-
served in the cleaner regions.

Computational Complexity

ivec [2] LSTM [1] HGRU
CPU 12 51 8
GPU 12 11.5 1.5

Table 3: Approximate computational time in
seconds for ten 30sec eval files using a single
CPU.

• Architecture of HGRU allows for parallel computa-
tion unlike LSTM.

• Noticeable improvement in the computational com-
plexity achieved at comparable or improved LID per-
formance.

• Machine Specification: 32 CPU, 8 core, 2 thread In-
tel x86-64 machine with 16 GB Nvidia Quadro P5000
GPU.

Summary

• Significantly improves over the previous attempts for end-to-end LSTM based language recogni-
tion systems [1].

• Robust to the presence of noise as well as in non-stationary conditions like partially corrupted
speech data or multi-talker speech segments.

• The attention mechanism plays the role of relevance weighting.

• Low relative computational complexity.
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