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· Neuron models can help us to understand the behavior of the 

brain and the effect of some medical treatment (e.g. deep 

brain stimulation[1] ) to brain

· We apply Covariance Matrix Adaptation Evolution Strategy 

(CMA-ES) to Multi-timescale Adaptive Threshold (MAT) neuron 

model optimization for higher spike-predicting accuracy

· We improve robustness to initial conditions by aggregation 

strategy

Introduction MAT Neuron Model[2]

Results

CMA-ES:   Populaition size:50    generations:100
GA:    Populaition size:100    generations:150

Method
Average results of GA/CMA-ES Aggregated GA/CMA-ES

Results of optimization

· An evolution strategy which uses a multivariate 

Gaussian distribution to represent a gene distribution

How it Works

Performance Evalution
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𝚫

Number of coincident spikes 

Number of spikes of the 
real/model neuron 

=4(ms) Allowable time range   

Spike frequency of the model neuron 

𝑵𝒄

𝑵𝒅

· Threshold Parameters {ω, α1, α2, τ1, τ2} 

· Generate spikes when 𝒖 > threshold 𝜽

CMA-ES Optimization

· Run CMA-ES for multiple trials with different initialization

· Find the best individual among all the trials 

Problem: Sensitive to 
the initial condition

· Needs larger population size for 

good performance

· Converges faster ( < 100th generation) 

· Needs smaller population size (30 to 50)
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Aggregated CMA-ES
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k : aggregation size
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Experimental Setup

Dataset

· Dataset of recorded rat neocortex neuron stimulus and voltage from the 

International  Competition on Quantitative Single-Neuron Modeling 2009[3]

Tools & Initialization
· GA: DEAPa library /  a set of random genes

· CMA-ES: Hansen'sb Tookit / a random gene

ahttps://github.com/deap/deap
bhttps://www.lri.fr/~hansen/cmaes_inmatlab.html

Conclusion

· CMA-ES's averaged performance outperforms GA and Nelder-Mead method

· Aggregated CMA-ES  is robust against the initial condition

Trial-1 :

CMA-ESTrial-2 :

CMA-ESTrial-3 :

CMA-ESTrial-k :

...

CMA-ES is more 

efficient than GA

𝜃0 = {𝜇0, Σ0} {𝑥1, 𝑥2, … , 𝑥𝑘} ∼ 𝒩(𝑥|𝜃0) 𝑦𝑖 = 𝑓 𝑥𝑖
𝑖 = 1,2, … , 𝑘

𝜃0 = {𝜇0, Σ0} → 𝜃1 = {𝜇1, Σ1}

Loop until 

convergence

𝜃𝑛 = {𝜇𝑛, Σ𝑛}

End
GA:

CMA-ES:

· Needs more generations for 

convergence

· Aggregated CMA-ES provides 

higher Γ than GA when aggregation 

size is larger than 10

A-GA A-CMA-ES Nelder

𝚪 0.612 0.630 0.618

α1 70.2 63.4 70.8

α2 7.18 9.10 6.85

 -47.9 -49.4 -47.88

1 9.62 9.71 10.54

2 90.3 85.6 104.4

Random

Initialization

Spike

Population:20 — - —
Population:30 ———
Population:50  --------
Population:100

Population:10 
Population:20 — - —
Population:30 ———
Population:50  --------

Neuron

· GA

× CMA-ES

· Γ : The accuracy of coincidence of a model 

spike train with a real spike train


