AUDIO CODING BASED ON SPECTRAL RECOVERY BY CONVOLUTIONAL NEURAL NETWORK

Seong-Hyeon Shin¹, Seung Kwon Beack², Taejin Lee² and Hochong Park¹

¹Kwangwoon University, Seoul, Korea ²Electronics and Telecommunications Research Institute, Daejeon, Korea

- neural network

- codec).
- Performance

Sub-frame-based transform 1024×2 MDCT coefficients for each frame of 2048 samples

- Recovering only high-band spectral data
 - Spectral recovery in low band yields unacceptable performance.

< Band boundary for recovery>

< The structure of convolutional i						
	layer	output shape	no. of filters			
	1	[152, 8]	32			
encoder layer	2	[152, 4]	64			
	3	[76, 4]	128			
	4	[76, 2]	256			
	5	[38, 2]	512			
	1	[76, 2]	256			
	2	[152, 2]	128			
decoder layer	3	[304, 2]	64			
	4	[608, 2]	32			
	5	[608, 2]	1			

neural network >

filter size	stride
[5, 5]	[2, 1]
[5, 5]	[1, 2]
[5, 5]	[2, 1]
[5, 3]	[1, 2]
[5, 3]	[2, 1]
[5, 3]	[2, 1]
[5, 3]	[2, 1]
[5, 3]	[2, 1]
[5, 3]	[2, 1]
[5, 3]	[1, 1]

- Quantization and coding of Q_0 Using quantizer and arithmetic
- coder of the USAC Converting 2D MDCT coefficients x[n]into 1D data using two scanning
- patterns for entropy coding

< Two scanning patterns >

- Database
 - hours)
- Bit rate comparison with USAC

Comparing the proposed method with USAC at 39.4 kbps Significantly better performance at the same bit rate

- recovery by a convolutional neural network.
- performance than USAC.

Evaluation

Train/validation data : Beethoven sonata, VCTK dataset, RWC music database (total 57

Test data : audio sequence offered by MPEG audio group (12 items) • 3 categories : music, speech, speech over music (SoM)

Using quantizer of USAC at 48 kbps and long window only

	Bit rate	(kbps)	Reduction		
	proposed	USAC	rate (%)		
0	32.4	176	20.4		
in R	1.5	42.0	20.4		
	5.5	5.4	-		
	39.4	48.1	18.1		

Subjective performance evaluation by MUSHRA : 7 subjects participated

music		SoM		average							
_	Ŧ										
	-	Ξ			Т	≖			_	Ŧ	
			Ŧ				Ŧ				Ŧ
Ref.	ACSR	USAC	Anchor	Ref.	ACSR	USAC	Anchor	Ref.	ACSR	USAC	Anchor

Conclusion

• The proposed method is a new audio coding method based on 2D spectral

• The proposed method integrated with USAC provides higher coding