o
. . . - . . Universitit
Session: Detection and Classification of Acoustic Scenes and Events Il lN k Augsburg

University

Attention-based Atrous Convolutional Neural Networks:
Visualisation and Understanding Perspectives of Acoustic Scenes

Zhao Ren', Qiugiang Kong?, Jing Han', Mark D. Plumbley?, Bjérn W. Schuller'?3

1ZD.B Chair of Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Germany
2 Centre for Vision, Speech and Signal Processing (CVSSP), University of Surrey, UK
3GLAM — Group on Language, Audio & Music, Imperial College London, UK

Zhao Ren
14.05.2019 Brighton, UK

o ;
faH TAP=S
Embedded Intelligence for i

? © Health Care and Wellbeing :




Outline

e Motivation

e Atrous Convolutional Neural Networks

e Global pooling

e Attention based Atrous Convolutional Neural Networks

e EXxperimental Results

e Conclusions and Future Work

Zhao Ren 2



Motivation

Is it possible to visualise CNNs
with a higher resolution for
better understanding?

How to achieve global pooling?
Input 9 P 9
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Atrous Convolutional Neural Networks
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Why?

e With local pooling, the size of a receptive field increases exponentially with the number of layers.

e Without local pooling, it increases linearly with the number of layers.



Atrous Convolutional Neural Networks

Visualise CNNs with a higher resolution

Atrous CNNs
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Advantages:
e Fix the size of feature maps.

e The size of receptive field increases exponentially with the number of layers.



Global Pooling

o Which Global Pooling Mechanism is better?

o Global Max Pooling
T R* = maX1<q<n IIla,X1<p<m R

-- Underestimate some potential units in feature maps.

o Global Average Pooling

_— x 1
R = mn Zl<q<n Zl<p<m R
-- Overestimate some sub-optimal units in feature maps.
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e How to evaluate the contribution of each time-frequency component to the

acoustic scene classification?

o  Global Attention Pooling

— |_earning the weight of each unit !

Advantages:
e Global Attention Pooling can learn the weight of the time-frequency units in feature maps during
training procedure.

e Global Attention Pooling can better explain feature maps corresponding to classes.



Attention based Atrous Convolutional Neural Networks
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Input: 320x64 320x64 320x64 320x64
9
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Classification matrix 320x64



Experimental Results

Accuracy SUBA SuBB

Network Pooling A A B C

Baseline CNN flatten 609 616 494 467

Baseline CNN max .686 698 572 578

Baseline CNN avg 691 658 572 .578

Baseline CNN att 124 726 622 561 -

CNN w/o local pool  max 604 619 467 522 T

CNN w/o local pool avg 628 591 544 500 Attention pooling works better.
CNN w/o local pool  roi 616 617 506 .439

CNN w/o local pool  att 621 596 450 .433

CNN w/o local pool roi+att  .681 692 561 .506 -

Atrous CNN max 688 697 600 .594 A

Atrous CNN avg 691 672 628 .600

Atrous CNN roi .652 626 483 .439 _

Atrous CNN att 721 732 644 622 ——f Atiention based atrous CNNS
Atrous CNN roi+att 726 722 572 567 b '
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Accuracy SUBA SUBB

Class A A B &

airport 596 740 611 .389

bus FIT 694 .667 944

e . 640 816 .944 236 Classes with high accuracies:
metro_station kT 822 .667  .667 park

park 843  .868 778 .778 shopping mall
public_square D93 454 500 333 street traffic

shopping_mall 1885 681 944 1.000]

street_pedestrian  .522 680 444 611 Classes with low accuracies:
street_traffic [.894 902 .833  .889| public square

tram 162 663 .056 056 ram

Average .70 732 .644 622
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classification matrix (320, 64)

-mel spectrogram (320, 64)
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attention matrix (320, 64)

log mel spectrogram (320, 64)
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Conclusions:

e \We proposed an attention-based atrous CNNs to visualise and understand acoustic
scenes.

e Our proposed attention performs better than the CNNs without dilation, and the
time-frequency information in feature maps were visualised and analysed.

Future work:

e We will investigate the attention model at the feature level, in order to analyse the
contributions of feature maps in each convolutional layers.
e CNNs followed by sequence to sequence learning methods and 3D CNNs will be

considered to investigate the temporal information in acoustic scenes
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