

Attention-based Atrous Convolutional Neural Networks: Visualisation and Understanding Perspectives of Acoustic Scenes

Zhao Ren¹, Qiuqiang Kong², Jing Han¹, Mark D. Plumbley², Björn W. Schuller^{1,3}

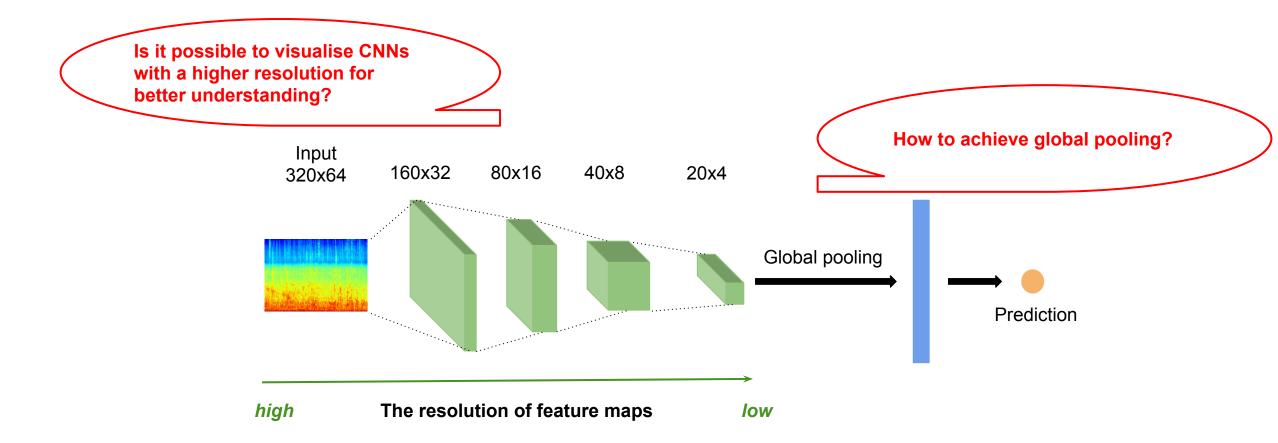
¹ZD.B Chair of Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Germany ² Centre for Vision, Speech and Signal Processing (CVSSP), University of Surrey, UK ³GLAM – Group on Language, Audio & Music, Imperial College London, UK

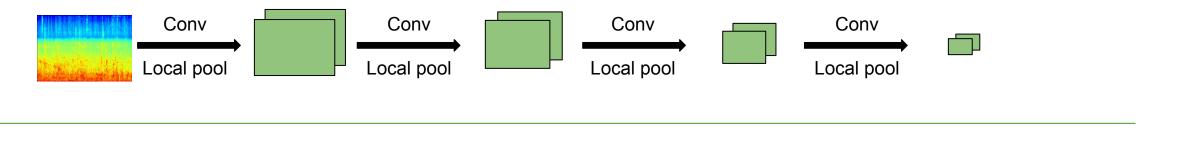
> Zhao Ren 14.05.2019 Brighton, UK

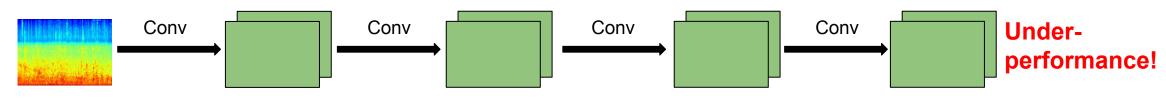
• <u>Motivation</u>

- <u>Atrous Convolutional Neural Networks</u>
- Global pooling
- <u>Attention based Atrous Convolutional Neural Networks</u>
- Experimental Results
- Conclusions and Future Work

Motivation





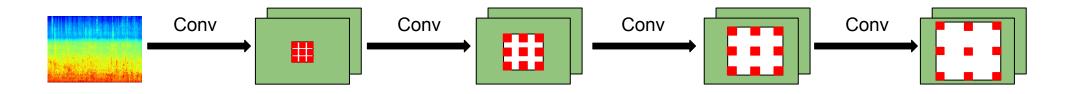


Why?

- With local pooling, the size of a receptive field increases **exponentially** with the number of layers.
- Without local pooling, it increases **linearly** with the number of layers.

Visualise CNNs with a higher resolution

Atrous CNNs



Advantages:

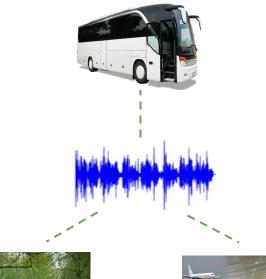
- Fix the size of feature maps.
- The size of receptive field increases exponentially with the number of layers.

Global Pooling

- Which *Global Pooling Mechanism* is better?
 - Global Max Pooling
 - -- $R^* = \max_{1 < q < n} \max_{1 < p < m} R$
 - -- Underestimate some potential units in feature maps.
 - Global Average Pooling

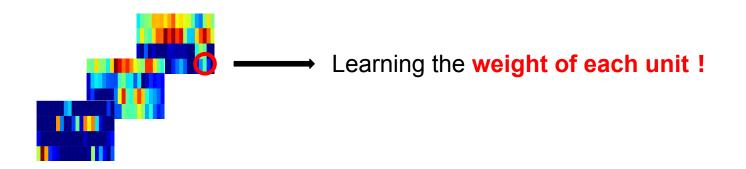
$$- R^* = rac{1}{mn} \sum_{1 < q < n} \sum_{1 < p < m} R$$

-- Overestimate some sub-optimal units in feature maps.



Global Pooling

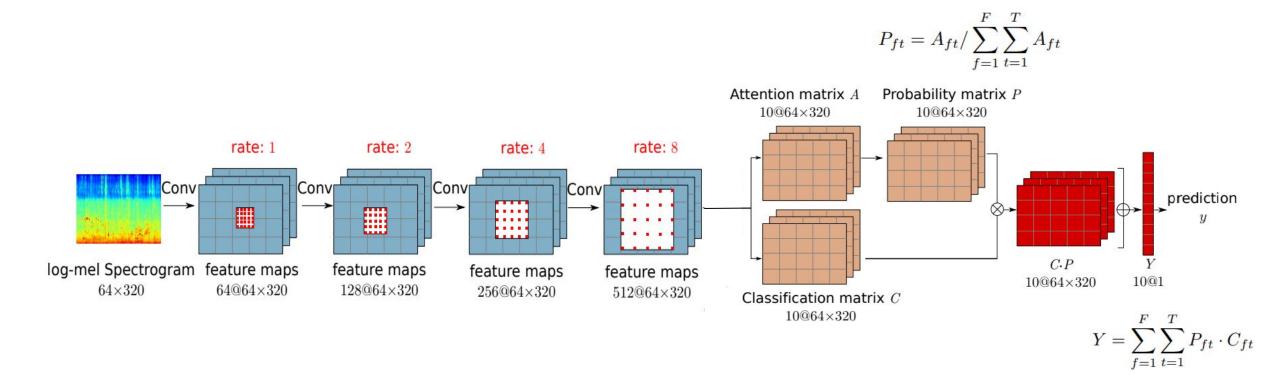
- How to evaluate the contribution of each time-frequency component to the acoustic scene classification?
 - Global Attention Pooling



Advantages:

- Global Attention Pooling can **learn the weight of the time-frequency units** in feature maps during training procedure.
- Global Attention Pooling can better explain feature maps corresponding to classes.

Attention based Atrous Convolutional Neural Networks

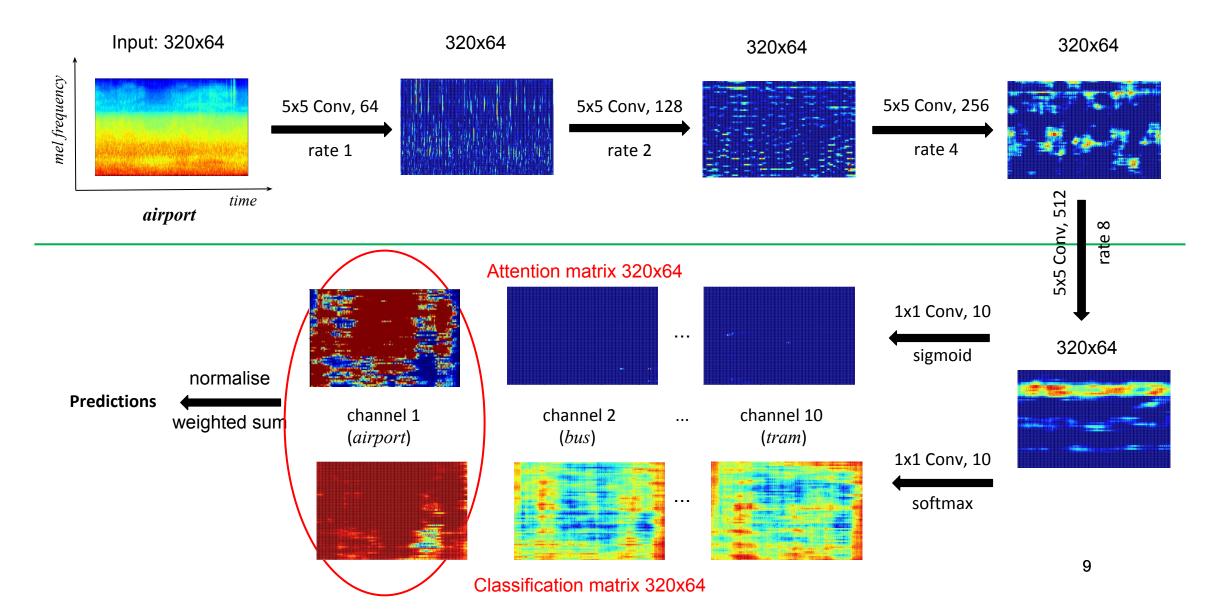


Universität

Augsburg University

Attention based Atrous Convolutional Neural Networks

Universität Augsburg University



Experimental Results

Accuracy		SUBA	SUBB		
Network	Pooling	A	A	B	C
Baseline CNN	flatten	.609	.616	.494	.467
Baseline CNN	max	.686	.698	.572	.578
Baseline CNN	avg	.691	.658	.572	.578
Baseline CNN	att	.724	.726	.622	.561
CNN w/o local pool	max	.604	.619	.467	.522
CNN w/o local pool	avg	.628	.591	.544	.500
CNN w/o local pool	roi	.616	.617	.506	.439
CNN w/o local pool	att	.621	.596	.450	.433
CNN w/o local pool	roi+att	.681	.692	.561	.506
Atrous CNN	max	.688	.697	.600	.594
Atrous CNN	avg	.691	.672	.628	.600
Atrous CNN	roi	.652	.626	.483	.439
Atrous CNN	att	.727	.732	.644	.622
Atrous CNN	roi+att	.726	.722	.572	.567

Experimental Results

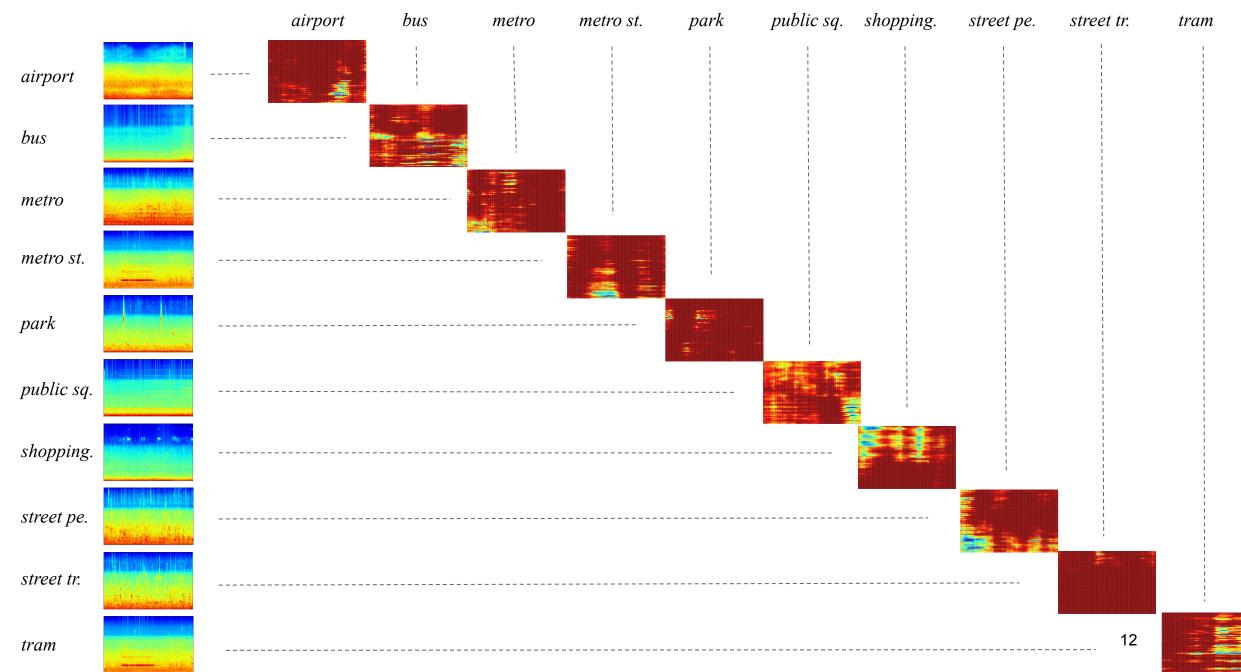
Accuracy	SUBA	SUBB			
Class	A	A	B	C	
airport	.596	.740	.611	.389	
bus	.777	.694	.667	.944	
metro	.640	.816	.944	.556	
metro_station	.757	.822	.667	.667	
park	.843	.868	.778	.778	
public_square	.593	.454	.500	.333	
shopping_mall	885	.681	.944	1.000	
street_pedestrian	.522	.680	.444	.611	
street_traffic	.894	.902	.833	.889	
tram	.762	.663	.056	.056	
Average	.727	.732	.644	.622	

Classes with high accuracies: park, shopping_mall, street traffic

Classes with low accuracies: public square tram

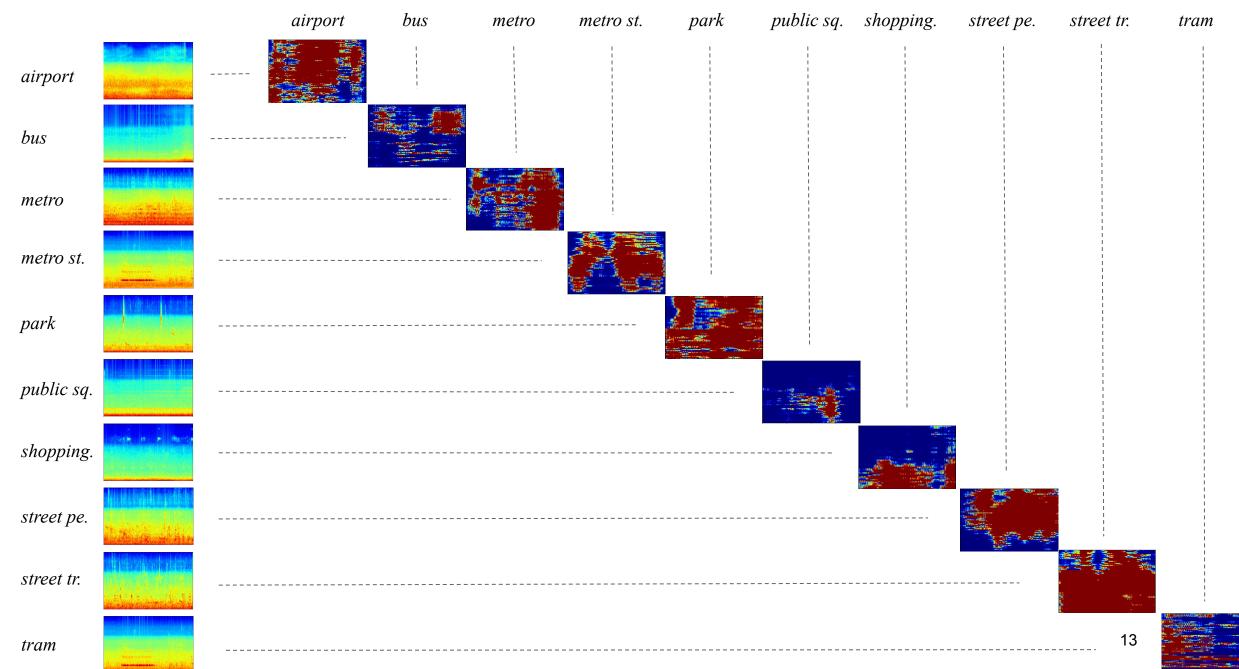
log-mel spectrogram (320, 64)

classification matrix (320, 64)



log mel spectrogram (320, 64)

attention matrix (320, 64)



Conclusions:

- We proposed an attention-based atrous CNNs to visualise and understand acoustic scenes.
- Our proposed attention performs better than the CNNs without dilation, and the time-frequency information in feature maps were visualised and analysed.

Future work:

- We will investigate the attention model at the feature level, in order to analyse the contributions of feature maps in each convolutional layers.
- CNNs followed by sequence to sequence learning methods and 3D CNNs will be considered to investigate the temporal information in acoustic scenes

Thank you for your attention!

zhao.ren@informatik.uni-augsburg.de

