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3. Bank-of-regressors (BoR) descriptor

1. Introduction

We introduce a novel descriptor learned by a bank of random regression forests
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for audio event representation. The descriptor offers different advantages: X
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e Temporal encoding: the temporal structure of an audio event category is
modeled by a class-specific regression forest in the bank.
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e Shared feature encoding: the responses of the regressor bank on a target
event quantify how it aligns to the structures of different event classes.

time
e Compact: the number of entries equals the number of event categories. Figure 1. Temporal coding for an audio event

e Discriminative: state-of-the-art performance even with linear classifiers.
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e [raining audio events are decomposed into a set of audio segments
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-d; = [d}, d7] € R2: distance vector to event onset and offset Figure 2. Extraction of BoR descriptor

e [ree construction [4
4] e A sequence of audio segments (x,;n=1...N) of a target event is

§, =1(x;.d,)} transformed into a compact BoR descriptor ¢ = [¢1, ..., ¢c]” € RY, where

- Binary test at split nodes:

1 if X" > 1 split node / 1 B
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- The optimal test is chosen by: fi(n) =) p'(n,clx) = > P(clx)p*(nfx, ©). (6)
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-c € {1,...,C} where C is the number of target event categories

- p*(n(x, c) and p—(n|X, ¢) given in (3) and (4), respectively

- P(c|x) is the probability that segment x matches to event class ¢, which is
modeled by the random forest classifier M

- Onset and offset distances at a leaf are modeled as Gaussians N (d*, )
and N~ (d~, X7) where d and X, respectively, denote the mean and variance.

Testing

e Fusion of structural and non-structural descriptors
- Non-structural features ¢ = [¢y, ..., oc]” € RY, where

- Event onset and offset estimations by a tree given a test audio segment x,, at
the time index n':

P (n[Xp, &, %) = N*(m; 1l — @, 57), (1) o= Plelx).
- - - el L - S N £—n=1
p (nXy,d”, X7 )=N"(n;n +d ,X"). (2)
- Fusion of two descriptors with extended Gaussian kernel:
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- Event onset and offset estimations by the forest of T trees:

+ 1 - TRt K(ej, ej) = exp ( — —D(ef, eY)), (9)

pr(nXn) = ?ZH'D (n[xp, df, 27), (3) o ( Zké{(b,@} g )

P (N|X,y) = 5T p(nXy, d7, T7). (4) where Q(e,’-‘, ej’-‘) IS ledista.nge between audio events e; and e; on k-th channel
Tt and A¥ is mean of D in training data.

4. Experimental results

Setup Experimental Results

e Databases: ITC-Irst, UPC-TALP, Freiburg-106, NAR. Table 1. Overall f-score (%) with the segment size of 50 ms.

e Low-level features: 16 log-frequency filter bank parameters + A + AA, zero- Dataset BoW PBoW M?X Best . Our systems
crossing rate, short time energy, four sub-band energies, spectral flux, spectral voling reporte BoR- BoR-\2 BoR+
centroid, and spectral bandwidth. . linear

e Our classifiers: linear SVM with BoR descriptors (BoR-linear), y?-kernel SVM TGC-Irst 97.3 | 966 | 959 | 973[5] 979 = 979 | 9.3
with BoR descriptors (BoR-y?), and SVM with feature fusion (BoR+). UPC-TALP 96.6 965 945 876[2] 958 = 967  96.8
Boselines: Baa-of-words (Bol - BOW (PBoW). and max vofin “reiburg-106 |~ 96.6  96.8 = 923 989[3] 972  97.8 @ 981

* Baselines: Bag-ot-words (BoW), pyramid BoW (PBoW), and max voting. NAR 948 964 926 97.0[1] 968 976 976
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Figure 3. Responses of regressor bank on audio events of different classes. Figure 4. Classification accuracy as a function of audio segment size.
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