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We introduce a novel descriptor learned by a bank of random regression forests
for audio event representation. The descriptor offers different advantages:

• Temporal encoding: the temporal structure of an audio event category is
modeled by a class-specific regression forest in the bank.

• Shared feature encoding: the responses of the regressor bank on a target
event quantify how it aligns to the structures of different event classes.

• Compact: the number of entries equals the number of event categories.

• Discriminative: state-of-the-art performance even with linear classifiers.

1. Introduction

Training

• Training audio events are decomposed into a set of audio segments
S : {si = [xi, di]; i = 1 ... |S|}, where
- xi ∈ RM: feature vector
- di = [d+

i , d−i ] ∈ R2
+: distance vector to event onset and offset

• Tree construction [4]

- Binary test at split nodes:

tr ,τ(x) =
{

1, if xr > τ
0, otherwise.

- The optimal test is chosen by:

t∗r ,τ = argmintr ,τ
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- Onset and offset distances at a leaf are modeled as Gaussians N +(d̄+,Σ+)
and N−(d̄−,Σ−) where d̄ and Σ, respectively, denote the mean and variance.

Testing

- Event onset and offset estimations by a tree given a test audio segment xn′ at
the time index n′:

p+(n|xn′, d̄+,Σ+) = N +(n; n′ − d̄+,Σ+), (1)
p−(n|xn′, d̄−,Σ−) = N−(n; n′ + d̄−,Σ−). (2)

- Event onset and offset estimations by the forest of T trees:

p+(n|xn′) =
1
T

∑T

t=1
p+(n|xn′, d̄+

t ,Σ+
t ), (3)

p−(n|xn′) =
1
T

∑T

t=1
p−(n|xn′, d̄−t ,Σ−t ). (4)

2. Random Regression Forest for Temporal Encoding

Setup

• Databases: ITC-Irst, UPC-TALP, Freiburg-106, NAR.

• Low-level features: 16 log-frequency filter bank parameters + ∆ + ∆∆, zero-
crossing rate, short time energy, four sub-band energies, spectral flux, spectral
centroid, and spectral bandwidth.

• Our classifiers: linear SVM with BoR descriptors (BoR-linear), χ2-kernel SVM
with BoR descriptors (BoR-χ2), and SVM with feature fusion (BoR+).

• Baselines: Bag-of-words (BoW), pyramid BoW (PBoW), and max voting.

1 - door knock 2 - door slam 3 - steps 4 - chair moving 5 - spoon cup jingle 6 - paper wrapping

7 - key jingle 8 - keyboard typing 9 - phone ring 10 - applause 11 - cough 12 - laugh

Figure 3. Responses of regressor bank on audio events of different classes.

Experimental Results

Table 1. Overall f-score (%) with the segment size of 50 ms.

Dataset BoW PBoW
Max

voting
Best

reported
Our systems

BoR-
linear

BoR-χ2 BoR+

ITC-Irst 97.3 96.6 95.9 97.3 [5] 97.9 97.9 99.3
UPC-TALP 96.6 96.5 94.5 87.6 [2] 95.8 96.7 96.8
Freiburg-106 96.6 96.8 92.3 98.9 [3] 97.2 97.8 98.1
NAR 94.8 96.4 92.6 97.0 [1] 96.8 97.6 97.6
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Figure 4. Classification accuracy as a function of audio segment size.

4. Experimental results
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Figure 1. Temporal coding for an audio event
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Figure 2. Extraction of BoR descriptor

• A sequence of audio segments
(
xn; n = 1 ... N

)
of a target event is

transformed into a compact BoR descriptor φ = [φ1, ... ,φC]T ∈ RC
+ , where

φc =
1
2

(
max

n

(
f +
c (n)) + max

n

(
f−c (n))

)
, (5)

f +
c (n) =

∑N

i=1
p+(n, c|xi) =

∑N

i=1
P(c|x)p+(n|x, c), (6)

f−c (n) =
∑N

i=1
p−(n, c|xi) =

∑N

i=1
P(c|x)p−(n|x, c). (7)

- c ∈ {1, ... , C} where C is the number of target event categories
- p+(n|x, c) and p−(n|x, c) given in (3) and (4), respectively
- P(c|x) is the probability that segment x matches to event class c, which is
modeled by the random forest classifierM
• Fusion of structural and non-structural descriptors

- Non-structural features ϕ = [ϕ1, ... ,ϕC]T ∈ RC
+ , where

ϕc =
1
N

∑N

n=1
P(c|xn). (8)

- Fusion of two descriptors with extended Gaussian kernel:

K (ei, ej) = exp
(
−
∑

k∈{φ,ϕ}

1
Ak D(ek

i , ek
j )
)
, (9)

where D(ek
i , ek

j ) is χ2 distance between audio events ei and ej on k -th channel
and Ak is mean of D in training data.

3. Bank-of-regressors (BoR) descriptor


