

UNIVERSITÄT ZU LÜBECK INSTITUTE FOR SIGNAL PROCESSING

Learning Compact Structural Representations for Audio Events Using Regressor Banks

Huy Phan, Marco Maass, Lars Hertel, Radoslaw Mazur, Ian McLoughlin, and Alfred Mertins

1. Introduction

We introduce a novel descriptor learned by a bank of random regression forests for audio event representation. The descriptor offers different advantages:

- **Temporal encoding**: the temporal structure of an audio event category is modeled by a class-specific regression forest in the bank.
- Shared feature encoding: the responses of the regressor bank on a target event quantify how it aligns to the structures of different event classes.
- **Compact**: the number of entries equals the number of event categories.
- **Discriminative**: state-of-the-art performance even with linear classifiers.

2. Random Regression Forest for Temporal Encoding

Training

- Training audio events are decomposed into a set of audio segments $S : \{s_i = [\mathbf{x}_i, \mathbf{d}_i]; i = 1 \dots |S|\}$, where
 - $\mathbf{x}_i \in \mathbb{R}^M$: feature vector
- $\mathbf{d}_i = [d_i^+, d_i^-] \in \mathbb{R}^2_+$: distance vector to event onset and offset
- Tree construction [4]
 - Binary test at split nodes:

$$t_{r,\tau}(\mathbf{x}) = \begin{cases} 1, & \text{if } \mathbf{x}^r > \tau \\ 0, & \text{otherwise} \end{cases}$$

- The optimal test is chosen by:

 $t_{r,\tau}^* = \operatorname{argmin}_{t_{r,\tau}} \left(\sum_{i} \|\mathbf{d}_i^{\text{left}} - \bar{\mathbf{d}}^{\text{left}}\|_2^2 + \sum_{i} \|\mathbf{d}_i^{\text{right}} - \bar{\mathbf{d}}^{\text{right}}\|_2^2 \right).$

- Onset and offset distances at a leaf are modeled as Gaussians $\mathcal{N}^+(\bar{d}^+, \Sigma^+)$ and $\mathcal{N}^-(\bar{d}^-, \Sigma^-)$ where \bar{d} and Σ , respectively, denote the mean and variance.

Testing

- Event onset and offset estimations by a tree given a test audio segment $\mathbf{x}_{n'}$ at the time index n':

Figure 2. Extraction of BoR descriptor

• A sequence of audio segments $(\mathbf{x}_n; n = 1 ... N)$ of a target event is transformed into a compact BoR descriptor $\boldsymbol{\phi} = [\phi_1, ..., \phi_C]^T \in \mathbb{R}^C_+$, where

$$\phi_{c} = \frac{1}{2} \Big(\max_{n} \left(f_{c}^{+}(n) \right) + \max_{n} \left(f_{c}^{-}(n) \right) \Big), \tag{5}$$

$$f_{c}^{+}(n) = \sum_{i=1}^{N} p^{+}(n, c | \mathbf{x}_{i}) = \sum_{i=1}^{N} P(c | \mathbf{x}) p^{+}(n | \mathbf{x}, c),$$
(6)
$$f_{c}^{-}(n) = \sum_{i=1}^{N} p^{-}(n, c | \mathbf{x}_{i}) = \sum_{i=1}^{N} P(c | \mathbf{x}) p^{-}(n | \mathbf{x}, c).$$
(7)

- $c \in \{1, ..., C\}$ where C is the number of target event categories - $p^+(n|\mathbf{x}, c)$ and $p^-(n|\mathbf{x}, c)$ given in (3) and (4), respectively

- $P(c|\mathbf{x})$ is the probability that segment \mathbf{x} matches to event class c, which is modeled by the random forest classifier \mathcal{M}

• Fusion of structural and non-structural descriptors

$$p^{+}(n|\mathbf{x}_{n'}, \bar{d}^{+}, \Sigma^{+}) = \mathcal{N}^{+}(n; n' - \bar{d}^{+}, \Sigma^{+}), \qquad (1)$$

$$p^{-}(n|\mathbf{x}_{n'}, \bar{d}^{-}, \Sigma^{-}) = \mathcal{N}^{-}(n; n' + \bar{d}^{-}, \Sigma^{-}). \qquad (2)$$

 $S_{\ell} = \{(\mathbf{x}_i, \mathbf{d}_i)\}$

 $\{(\mathbf{x}_{i}^{left}, \mathbf{d}_{i}^{left})\} = \{(\mathbf{x}_{i}^{right}, \mathbf{d}_{i}^{right})\}$

 $t\left(\mathbf{x}\right) = 0$

split node 4

 $t(\mathbf{x}) = 1$

- Event onset and offset estimations by the forest of *T* trees:

$$p^{+}(n|\mathbf{x}_{n'}) = \frac{1}{T} \sum_{t=1}^{T} p^{+}(n|\mathbf{x}_{n'}, \bar{d}_{t}^{+}, \Sigma_{t}^{+}), \qquad (3)$$

$$p^{-}(n|\mathbf{x}_{n'}) = \frac{1}{T} \sum_{t=1}^{T} p^{-}(n|\mathbf{x}_{n'}, \bar{d}_{t}^{-}, \Sigma_{t}^{-}). \qquad (4)$$

- Non-structural features $\varphi = [\varphi_1, \dots, \varphi_C]^T \in \mathbb{R}^C_+$, where

$$\varphi_c = \frac{1}{N} \sum_{n=1}^{N} P(c | \mathbf{x}_n).$$
(8)

- Fusion of two descriptors with extended Gaussian kernel:

$$K(e_i, e_j) = \exp\left(-\sum_{k \in \{\phi, \varphi\}} \frac{1}{A^k} D(e_i^k, e_j^k)\right), \tag{9}$$

where $D(e_i^k, e_j^k)$ is χ^2 distance between audio events e_i and e_j on k-th channel and A^k is mean of D in training data.

4. Experimental results

Setup

- Databases: ITC-Irst, UPC-TALP, Freiburg-106, NAR.
- Low-level features: 16 log-frequency filter bank parameters + Δ + $\Delta\Delta$, zerocrossing rate, short time energy, four sub-band energies, spectral flux, spectral centroid, and spectral bandwidth.
- Our classifiers: linear SVM with BoR descriptors (**BoR-linear**), χ^2 -kernel SVM with BoR descriptors (**BoR-** χ^2), and SVM with feature fusion (**BoR+**).
- **Baselines**: Bag-of-words (**BoW**), pyramid BoW (**PBoW**), and **max voting**.

Experimental Results

94.8

96.4

NAR

Max Best Our systems PBoW BoW Dataset voting reported **BoR-BoR**- χ^2 BoR+ linear ITC-Irst 97.3 96.6 95.9 97.3 [5] 99.3 97.9 97.9 96.6 96.8 UPC-TALP 96.5 94.5 87.6 [2] 96.7 95.8 96.6 92.3 **98.9** [3] 97.2 97.8 98.1 Freiburg-106 96.8

97.0 [1]

96.8

97.6

97.6

92.6

Table 1. Overall f-score (%) with the segment size of 50 ms.

Figure 3. Responses of regressor bank on audio events of different classes.

Figure 4. Classification accuracy as a function of audio segment size.

References

J. Maxime, X. Alameda-Pineda, L. Girin, and R. Horaud. Sound representation and classification benchmark for domestic robots. In *Proc. ICRA*, pages 6285–6292, 2014.
 C. Nadeu, R. Chakraborty, and M. Wolf. Model-based processing for acoustic scene analysis. In *Proc. EUSIPCO*, pages 2370–2374, 2014.
 H. Phan, L. Hertel, M. Maass, R. Mazur, and A. Mertins. Audio phrases for audio event recognition. In *Proc. EUSIPCO*, pages 2546–2550, 2015.
 H. Phan, M. Maaß, R. Mazur, and A. Mertins. Random regression forests for acoustic event detection and classification. *TASLP*, 23(1):20–31, 2015.
 H. Phan and A. Mertins. Exploring superframe co-occurrence for acoustic event recognition. In *Proc. EUSIPCO*, pages 631–635, 2014.

ICASSP 2016, Shanghai, China

