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Summary Method TILES Dataset
Background: 4 Pre-processing A » TILES, Tracking Individual pErformance with Sensors, is a
» Motifs are repetitive similar patterns that frequently appear in time-series. STt N v T T \ T T TTTTE \ comprehensive human-subject experiments conducted in early 2018 to examine
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» Motifs existing in wearable sensor signals can help to understand i AggE:g::tiun :_..4: Fiﬁ::;g — TEEJ::: | __i Tgxpt;:cl'::zzf | now the physiological, environmental, and behavioral variables impact job
bio-behavioral patterns such as sleep pattern, commute behavior. . #: N #:' AR ) \ #: performance and employee wellness.
: . _/ » [ he cohort used in this work includes over 100 individuals working as full-time
Challenges: g
Figure 3: Optimal variable-length time-series motif learning pipeline. nursing professions and 84 individuals worked the day shift
A - N \ » This work focuses on analyzing PPG data collected using Fitbit Charge 2
Motif 1 has different subsequences in Motif 1 and Motif 2 are similar
varied length, how would we efficiently should thev be one motif? ’ _ _ _ :
identify them? J o\ Y o Pre-processing All Nurses Day-shift Night-shift
3 / Motit1 L Motit 2 » Data aggregation — The time-series is aggregated every 3 minute. Average 1162.63 1182.50 1131.30
> " » Data filtering —> Savitzky-Golay filter. Standard Deviation 403.48 401.51 404.60
» HIME (Hierarchlcal based Motif Enumeration) — Variable-length Table 1: Average/Std of valid PPG recording length in hours in TILES study.
motifs are detected using in a single SAX word w = wyws...w;.
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Figure 1: Challenges in motif discovering. Subsequences in PAA Subsequences in Symbols Results
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» Motif length could vary in wearable sensor time-series. : belong to the » Examples of learned optimal motifs.
_ _ . _ (1.12, 1.05, 0.85, 0.62, 0.57, 0.43) { (a,a,a,b,b,b) re same motif? Instance start time Instance start time Instance start time Instance start time
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» A variable-length motif learning approach that combines SAX-based motif - —————— " —============== | occurring motif? E > > »
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Figure 5: 4 subsequences of a motif that occurred repeatedly during the start of sleep
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» [ he proposed pipeline can capture useful structure for human behavioral Figure 4: How should we choose the top-K motifs:

analysis and modeling from heart rate data collected in the wild
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» Matrix U = PAA representation of J subsequences (U € R’*"), where : 0 0 0 0
» (t1, to, ..., ti, tit1, ..., t,) = The time series data T of length n. each row in U represents a PAA vector of one subsequence of length L. Ej j :j :2
» s, . = A contiguous set of samples (subsequence) start from point p and P Define total frequency given M with K motifs and distance threshold D: D Timeminate Y Timeminate Y Timetminate Y Time (minater
end at g. Figure 6: 4 subsequences of a motif that occurred repeatedly during the end of sleep
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» u = (ug, U, ..., ur) = The piecewise aggregate approximation (PAA) ~ 1, if S (M — U )2 <D » Applying motif features to predict work status using motif frequencies from
SR FIM)=) Y Fij, where F; = o e .
representation of s, . <= > 0, otherwise our pipeline and HIME algorithm.
» Word w = wiwy...w; = Symbolic representation of a subsequence. " f kzl_J_ EO) L e y e ;
» Top-K motifs = K Motifs that maximizes the total number of recurrent > ehwan};c ugctzlon D(' ) is maximized while K motifs are different from HIME Motit, D Motit, D Motitf, D
subsequences, while pairwise Euclidean distances between different motifs each other by £ x L L Motif  at pct=1% at pct=2% at pct=3"%
are above a threshold value. _ 0 0 0 0
M* — argmaXF(M), SUb_]ECt to Z(Mk,/ L Mh,/)z ~ 2D Accuracy 6520%) 6562%) 6720%) 6854%)
MeRKxL 1—1 Table 2: Prediction accuracy of work status using motif derived features
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