
Wireless Information Networking Research Group         http://win.uab.cat

Missing Data In Traffic Estimation:
A Variational Autoencoder Imputation Method 

Guillem Boquet, Jose Lopez Vicario, Antoni Morell & Javier Serrano

ICASSP 2019, Brighton, UK

Wireless	Information	Networking	Group
Telecommunications and Systems Engineering Department
Universitat Autònoma de Barcelona (UAB)



Wireless Information Networking Research Group         http://win.uab.cat

OUTLINE
1. Missing Data Problem
2. The Imputation Method
3. Experimentation
4. Conclusion



Wireless Information Networking Research Group         http://win.uab.cat

Context
� Future Intelligent Transportation Systems (ITS)
� Road Traffic Forecast relevance
� Deep Learning trend

1. Problem – 2. Imputation  – 3. Experimentation – 4. Conclusion

Major challenges
� of future road traffic forecast [Laña et al., 2018]: 

� Quality of the data
� Network-level predictions 
� Spatiotemporal forecasts 
� Model selection techniques 
� Etc.
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Missing data problem
� All real-world traffic data sets contain missing values (MVs)
� Negatively affect estimation accuracy but often underestimated [Laña, 2018; Vlahogianni, 2014] 
� Current imputation methods in traffic forecast:

� ARIMA, KNN and PCA based methods 
� Automated clustering tool [Laña et al., 2018-b]
� LSTM, SVR and collaborative filtering [Li et al., 2018]
� Bayesian tensor decomposition model [Chen et al., 2019]

1. Problem – 2. Imputation  – 3. Experimentation – 4. Conclusion
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Proposal
Assumption: 
� Traffic data samples are 

not randomly generated 

1. Problem – 2. Imputation – 3. Experimentation – 4. Conclusion
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Proposal
� Exists a non-linear latent manifold from which traffic data are generated 
Solution: 
� Generative model
� Bayesian inference to learn the data distribution and infer the missing values
à multidimensional unsupervised online imputation method

1. Problem – 2. Imputation – 3. Experimentation – 4. Conclusion
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Generative Model

1. Problem – 2. Imputation – 3. Experimentation – 4. Conclusion

X: traffic data (observed)
z: random latent variable
𝜽: model parameters

Intractable! 
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Maximum likelihood problem:

How traffic data is generated?
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Variational Autoencoder (VAE)

1. Problem – 2. Imputation – 3. Experimentation – 4. Conclusion
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Optimization problem
solved via SGD
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Regularizer: 
approximate	q to	the	true	posterior p(z|X)

qφ(z|X) pθ(X|z)
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Implementation

1. Problem – 2. Imputation – 3. Experimentation – 4. Conclusion

MSE

Network assumptions:
p(z) = Unit Gaussian
q(z|X) = Multivariate Gaussian
p(X|z) = Multivariate Gaussian 

ɸ, 𝜽: weights and biases?
ReLU

DKL(N (µ,σ)||N (0, I))

z ∼ N (µ,σ) ∈ RJ
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continuous latent space!
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Imputation procedure

1. Problem – 2. Imputation – 3. Experimentation – 4. Conclusion
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y-axis: 6 hours of speed data
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Iterate for convergence 
(Markov chain that converges to the true marginal distribution of missing values 
given observed values [Rezende, 2014])

z ∼ N (µ,σ)

Projection to 
latent space
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Real-world data set

1. Problem – 2. Imputation  – 3. Experimentation – 4. Conclusion

Source: PeMS [http://pems.dot.ca.gov]
I-5 highway
31 sensors near San Diego
5-min samples from 2015 to 2017 I-5

Three data sets:
Original: PeMS imputed data [Chen, 2002]

Training: 2015 (105360 samples )

NMAR: samples with quality < 75% removed 
MCAR-%: random 10, 20 and 40% removed 

Testing: 2016 (105072 samples)

NMAR (11.28% MVs)
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Experiment

1. Problem – 2. Imputation  – 3. Experimentation – 4. Conclusion
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Results
Impact on traffic forecast:
� RMSE improvement of 70%, 53%

and 40% over RL, PCA and AE on 
NMAR data. 

� RMSE improvement of 55%, 19%
and 17% over RL, PCA and AE on 
MCAR–40. 

� VAE performed better on NMAR 
(11.28% MVs) rather than MCAR–10 

1. Problem – 2. Imputation  – 3. Experimentation – 4. Conclusion
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Original NMAR MCAR-10 MCAR-20 MCAR-40
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Results
Impact of code dimension:
� With a reduced code space dimension 

the accuracy remains similar despite 
increasing the MCAR proportion

� No significant results on NMAR data

1. Problem – 2. Imputation  – 3. Experimentation – 4. Conclusion



Wireless Information Networking Research Group         http://win.uab.cat

Conclusion
� Multidimensional online unsupervised imputation method
� VAE can model traffic data and extract useful features 
� Increases performance of traffic forecasting systems
� Improvements are greater on NMAR data which are mainly found on real-world data sets
� Also, useful for transportation modelers (future work):

� Interpretability of the latent space (meaningful representations)
� Outlier detection (anomalous traffic)
� Dimension reduction (data compression)
� Generative model with continuous latent space (road traffic network exploration)

1. Problem – 2. Imputation – 3. Experimentation – 4. Conclusion
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guillem.boquet@uab.cat
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