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Explore the effect of training and testing a context-aware neural-  Two types of ASR architectures: m Experiments varing the context
based dialog act (DA) classifier on transcriptions generated from m Hybrid Time Delay Neural Network and Hidden Markov Model o MRDA + SWDA
two different automatic speech recognition (ASR) systems, so that (TDNN/HMM) trained with lattice-free maximum mutual information. o
the DA classification is taken into a more realistic scenario. s Joint CTC-Attention End-to-End (E2E): shared-encoder representation > 82 %;, 877 844.6
trained by both Connectionist Temporal Classification (CTC) and at- S 78 80.2 TR 74.6 745
Utterance Dialog Act tention model using the following combined trainig loss: g ia o - '
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A: Uh-huh. Acknowledge (Backchannel) R Context
B: [ don't play an instrument.  Statement-non-opinion | f ah = Experiments on MRDA
Manual transcription (MT) extract from Switchboard [1] Test data
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- Convolutlor?al neural networks (CNNSs) for utterance R L f Training data
representation. E : SwDA
o _ | TDNN/HMM from [3, 4] CTC-Attention E2E from [5] m Xperiments on Sw
= Conditional random fields (CRFs) for sequence labeling.
Test data
U5 U1 Uy Hyperpara meters: e = MTs = TDNN/HMM = CTC-Attention E2E
o D m I DNN: 6 layers with default settings for spliced indices in Kaldi recipe; o
using MFCC and iVector features with LDA. 3 . 674' ﬂ 68.6 l h 65.7 l
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l m CTC-Attention E2E: five Iayers of 1024 BLSTM units for Encoder and TDNN/HMM CTC-Attention E2E
Cﬂwi'”tmn a layer of 1024 LSTM units for Decoder; using 80-bin logMel filter Training data
Pooling banks and pitch as suggested in Espnet recipe [6]. .
Conclusion
R - Experlmental SEtUp m  We explored dialog act classification on automatic transcriptions by
i i Datasets: means of CNNs and CRFs.
i ! MRDA: ICSI Meeting Recorder Corpus [7] Eyp_erp?rar?ew_ \Fga:_uj s Although the WERs from both ASR syetems are comparable, the End-
. : ctivation tunction e : : : e :
| i SwDA: Switchboard DA Corpus e width 345 to-End ASR system might be more suitable for dialog act classification.
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! : Dataset C |V| Train Val Test Filters per width 100 s Punctuation yields central cues for the task. Therefore, it should be
I . . .
S i S MRDA 5 12k 78k 16k 15k Pooling size Utterance-wise integrated into the ASR output in future works.
Model architecture. & stands for concatenation. SWDA 42" 20k 193k 23k Sk Embeddings Word2vec 3]
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