

Universität Stuttgart

Motivation

Explore the effect of training and testing a context-aware neuralbased dialog act (DA) classifier on transcriptions generated from two different automatic speech recognition (ASR) systems, so that the DA classification is taken into a more realistic scenario.

Utterance	Dialog Act
A: Are you a musician yourself?	Yes-no-question
B: Uh, well, I sing.	Affirmative non-yes ans
A: Uh-huh.	Acknowledge (Backchai
B: I don't play an instrument.	Statement-non-opinion

Manual transcription (MT) extract from Switchboard [1]

Dialog Act Classification Model

Our two-fold model consist of:

- Convolutional neural networks (CNNs) for utterance representation.
- Conditional random fields (CRFs) for sequence labeling.

Model architecture. \oplus stands for concatenation.

- The model takes the current and n previous utterances (context) as input in a grid-like representation [2].
- For evaluation, only the DA predicted for the current utterance is taken into account.

Context-aware Neural-based Dialog Act Classification On Automatically Generated Transcriptions

Automatic Speech Recognition

Two types of ASR architectures:

- Hybrid Time Delay Neural Network and Hidden Markov Model (TDNN/HMM) trained with lattice-free maximum mutual information.
- Joint CTC-Attention End-to-End (E2E): shared-encoder representation trained by both Connectionist Temporal Classification (CTC) and attention model using the following combined trainig loss:

TDNN/HMM from [3, 4]

CTC-Attention E2E from [5]

Hyperparameters:

- TDNN: 6 layers with default settings for spliced indices in Kaldi recipe; using MFCC and iVector features with LDA.
- CTC-Attention E2E: five layers of 1024 BLSTM units for Encoder and a layer of 1024 LSTM units for Decoder; using 80-bin logMel filter banks and pitch as suggested in Espnet recipe [6].

Experimental Setup

Datasets:

MRDA: ICSI Meeting Recorder Corpus [7] **SwDA**: Switchboard DA Corpus

Dataset	С	V	Train	Val	Test
MRDA	5	12k	78k	16k	15k
SwDA	42	20k	193k	23k	5k

Hyperparam Activation fu Filter width Filters per w Pooling size Embeddings

C: # of classes, |V|: Vocabulary size, Train/Val/Test: # of utts.

Dataset	ASR System	Train (WER)	Val (WER)	Test (WER)
MRDA	TDNN/HMM	9.89	19.28	21.48
	CTC-Attention E2E	2.30	16.80	18.80
SwDA	TDNN/HMM	13.8	14.28	18.02
	CTC-Attention E2E	29.0	8.90	18.80

Best ASR performance in terms of WER (%)

eter	Value
unction	ReLU
	3, 4, 5
vidth	100
	Utterance-wise
	Word2vec [8]

CNN hyperparameters

Experimental Results

Experiments on MRDA

Experiments on SwDA

Conclusion

- means of CNNs and CRFs.
- integrated into the ASR output in future works.

	D. Ortega Chia-Yu Li G. Vallejo P. Desinov
t	Thang Vu
DA 🔹 SwDA	
6 84.7	84.6
74.6	74.5
2	3
Context	
Fest data MM ■ CTC-Attention E2	2E
6.2 74 71.1	70.9 73.2 76.6
uation) TDNN/HMM	CTC-Attention E2E
Training data	
Fest data MM ■ CTC-Attention E2	2E
6.9 67.9 68.6	66.6 67.1 68.7
TDNN/HMM	CTC-Attention E2E
Training data	

We explored dialog act classification on automatic transcriptions by

Although the WERs from both ASR systems are comparable, the Endto-End ASR system might be more suitable for dialog act classification. Punctuation yields central cues for the task. Therefore, it should be

ous: ics,	[5]	S. Kim et al. Joint CTC-Attention based End-to- End Speech Recognition using Multi-task Learning. In
en- 4 <i>L</i> ,	[6]	S. Watanabe et al. ESPnet: End-to-End Speech Process- ing Toolkit In <i>INTERSPEECH</i> , 2018.
eep on.	[7]	E. Shriberg et al. The ICSI meeting recorder dialog act (MRDA) corpus In <i>SIGdial Workshop on Discourse and Dialogue at HLT-NAACL</i> , 2004.
2. ec- In	[8]	T. Mikolov et al. Efficient estimation of word representa- tions in vector space. In <i>ICLR</i> , 2013.

{daniel.ortega, chiayu.li, thang.vu}@ims.uni-stuttgart.de

^[1] S. Calhoun et al. The NXT-format Switchboard Corp A Rich Resource for Investigating the Syntax, Semant Pragmatics and Prosody of Dialogue. In *LREC*, 2010.

^[2] D. Ortega and N. T. Vu. Neural-based Context Repres tation Learning for Dialog Act Classification. In SIGDIA 2017

^[3] G. E. Dahl et al. Context-Dependent Pre-trained De Neural Networks for Large-Vocabulary Speech Recogniti In IEEE Trans. Audio, Speech, Language Process, 2012

^[4] V. Peddinti et al. A time delay neural network archite ture for efficient modeling of long temporal contexts INTERSPEECH, 2015.