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Motivation
Explore the effect of training and testing a context-aware neural-
based dialog act (DA) classifier on transcriptions generated from
two different automatic speech recognition (ASR) systems, so that
the DA classification is taken into a more realistic scenario.

Utterance Dialog Act
A: Are you a musician yourself? Yes-no-question
B: Uh, well, I sing. Affirmative non-yes answer
A: Uh-huh. Acknowledge (Backchannel)
B: I don’t play an instrument. Statement-non-opinion

Manual transcription (MT) extract from Switchboard [1]

Dialog Act Classification Model
Our two-fold model consist of:

• Convolutional neural networks (CNNs) for utterance
representation.

• Conditional random fields (CRFs) for sequence labeling.

Model architecture. ⊕ stands for concatenation.

• The model takes the current and n previous utterances (con-
text) as input in a grid-like representation [2].

• For evaluation, only the DA predicted for the current utterance
is taken into account.

Automatic Speech Recognition
Two types of ASR architectures:

• Hybrid Time Delay Neural Network and Hidden Markov Model
(TDNN/HMM) trained with lattice-free maximum mutual information.

• Joint CTC-Attention End-to-End (E2E): shared-encoder representation
trained by both Connectionist Temporal Classification (CTC) and at-
tention model using the following combined trainig loss:

L = αLctc + (1 − α)Latt

TDNN/HMM from [3, 4] CTC-Attention E2E from [5]

Hyperparameters:

• TDNN: 6 layers with default settings for spliced indices in Kaldi recipe;
using MFCC and iVector features with LDA.

• CTC-Attention E2E: five layers of 1024 BLSTM units for Encoder and
a layer of 1024 LSTM units for Decoder; using 80-bin logMel filter
banks and pitch as suggested in Espnet recipe [6].

Experimental Setup
Datasets:
MRDA: ICSI Meeting Recorder Corpus [7]
SwDA: Switchboard DA Corpus

Dataset C |V| Train Val Test
MRDA 5 12k 78k 16k 15k
SwDA 42 20k 193k 23k 5k

C: # of classes, |V|: Vocabulary size,
Train/Val/Test: # of utts.

Hyperparameter Value
Activation function ReLU
Filter width 3, 4, 5
Filters per width 100
Pooling size Utterance-wise
Embeddings Word2vec [8]

CNN hyperparameters

Dataset ASR System Train (WER) Val (WER) Test (WER)
MRDA TDNN/HMM 9.89 19.28 21.48

CTC-Attention E2E 2.30 16.80 18.80
SwDA TDNN/HMM 13.8 14.28 18.02

CTC-Attention E2E 29.0 8.90 18.80
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Experimental Results
• Experiments varing the context
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• Experiments on SwDA
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Conclusion
• We explored dialog act classification on automatic transcriptions by

means of CNNs and CRFs.

• Although the WERs from both ASR syetems are comparable, the End-
to-End ASR system might be more suitable for dialog act classification.

• Punctuation yields central cues for the task. Therefore, it should be
integrated into the ASR output in future works.
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