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1. Contribution

We propose a practical approach based on federated
learning to solve out-of-domain issues with continuously
running embedded speech-based models such as wake
word detectors.

I we conduct an extensive empirical study of the
federated averaging algorithm for the “Hey Snips”
wake word based on a crowdsourced dataset that
mimics a federation of wake word users.

I we empirically demonstrate that using an adaptive
averaging strategy inspired from Adam in place of
standard weighted model averaging highly reduces
the number of communication rounds required to
reach our target performance.

3. The ”Hey Snips” Dataset

I Distributed: 1.8k distinct contributors
I Non-iid: each contributor used their own

recording setting, and recorded themselves saying
several occurrences of the Hey Snips wake word
(18% of total utterances) along with negative short
sentences from various text sources

I Unbalanced: varying amounts of training
utterances per user (mean: 39, standard dev: 32).

I train, dev and test splits (see Table 1) contain
distinct users - eval accounts for generalization
power to unseen users

Train set Dev set Test set Total
1,374 users 200 users 200 users 1,774 users
53,991 utt. 8,337 utt. 7,854 utt. 69,582 utt.

Table 1: Dataset statistics.

Open access for non-commercial use: to promote
repeatable research [1]

I https://research.snips.ai/datasets/

keyword-spotting

4. Model

Acoustic features:
I 20-dimensional log-Mel filterbank energies
I extracted from the input audio every 10ms over a

window of 25ms.

Labelling:
I 4 output labels (“Hey”, “sni”, “ps”, and “filler”)
I label is at the frame level based on aligner output

Architecture: inspired from [2]
I input window: 32 stacked frames, symmetrically

distributed in left and right contexts
I 5 stacked dilated convolutional layers of increasing

dilation rate, 2 fully-connected layers followed by
softmax (∼ 200k parameters)

I posterior handling [3] generates a confidence score
for every frame by combining the smoothed label
posteriors

I model triggers when confidence is above threshold
τ that defines the operating point of the model

Training:
I trained using cross-entropy on target labels
I threshold τ set for 5 False Alarms per Hour (FAH)

on the dev set

2. Federated Optimization [4]

Objective function
I supervised learning objective function fi(w) = l(xi, yi, w) that is the loss function for the prediction on

example (xi, yi) when using a model described by a real-valued parameter vector w of dimension d.
I datapoints i are partitioned across K users, each user being assigned their own partition Pk, |Pk| = nk.

min
w∈Rd

f (w) where f (w)
def
=

∑K
k=1

nk
n × Fk(w), with Fk(w) =

1
nk

∑nk
i=1 fi(w) (1)

Optimization procedure : The model is initialized with a given architecture on a central parameter server with
weights w0. Once initialized, the parameter server and the user’s devices interact synchronously with each other
during communication rounds. At time t ∈ [1, .., T ] :

1. the central model wt−1 is shared with a subset of users St randomly selected from the pool of K users
(participation ratio C).

2. each user k ∈ St performs one or several training steps on their local data using mini-batch SGD with a local
learning rate ηlocal. The number of steps performed locally is E ×max(ceil(nkB ), 1), nk being the number of
datapoints available locally, E the number of local epochs and B the local batch size.

3. users from St send back their model updates wt,k, k ∈ St to the parameter server once local training is finished.

4. the server computes an average model wt based on the user’s individual updates wt,k, k ∈ St, each user’s

update being weighted by nk
nr

, where nr =
∑

k∈St nk ≈ C ×
∑K

k=1 nk.

Per-coordinate gradient update: the averaging step 4 can be written as global gradient update. This motivates
the use of adaptive per-coordinate updates that have proven successful for centralized deep neural networks
optimization such as Adam [5].

wt← wt−1 − ηglobalGt where Gt =
∑
k∈St

nk
n
(wt−1 − wt,k) (2)

5. Results

Evaluation metrics:
I number of communication rounds required to reach early stopping target of 95% recall / 5 FAH on dev set
I at fixed threshold, FAH evaluated on test set negative (hard) and background negative data

Standard setting: training in a centralized fashion e.g mini-batch SGD with data from train set users being
randomly shuffled, stopping criterion reached in 400 steps (∼ 2 epochs)

Federated setting Best performances are obtained in the following setting:
I user parallelism is set to C = 10%. See Figure 1, the gain of using C = 50% e.g half of users for each round is

insignificant when compared to using 10%, especially in the later stages of convergence.
I the Adam global averaging strategy with ηglobal = 0.001 is used. As seen in Table 2, global adaptive learning

rates based on Adam drastically accelerates convergence when compared with standard averaging strategies.
I local training is optimal for E = 1 and B = 20 with a local learning rate of 0.01. Experiments have shown

limited improvements coming from increasing the load of local training as the number of communication
rounds required to reach the stopping criterion on the dev set ranges between 63 and 112 communication
rounds for E ∈ [1, 3] and B ∈ [20, 50,∞].

Figure 1: Effect of the share of users involved in each round
C on the dev set recall / 5 FAH, FedSGD, Adam global

averaging, ηglobal = 0.001, ηlocal = 0.01

Avg. Strategy 100 rounds 400 rounds
Standard
ηglobal = 1.0 29.9% 67.3%
Adam
ηglobal = 0.001 93.50% 98.29%

Table 2: Dev set recall / 5 FAH for various averaging
strategies - FedSGD, C = 10%

The parameters above lead to the following results:
I Communication rounds: the number of training steps needed to reach the stopping criterion amounts to

approximately 3300 for 100 communication rounds e.g. 8.25 times the number of steps required in the standard
setting, with much smaller batches.

I Communication cost: the upstream communication cost is 8MB per user over the course of the
optimization procedure, amounting to 110GB over the course of the whole optimization process with 1.4k users
involved during training.

I False alarm evaluation: 3.2 FAH on the negative test data, 3.9 FAH on Librispeech, and respectively 0.2
and 0.6 FAH on our internally-collected news and TV datasets.

I Later convergence stage: same parameters, 400 rounds yields 98% recall / 0.5 FAH on the test set for an
upload budget of 32 MB per user.
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[4] H. Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Agüera y Arcas. Federated learning of deep networks using model averaging. CoRR, abs/1602.05629, 2016.
[5] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980, 2014.

https://research.snips.ai/datasets/keyword-spotting
https://research.snips.ai/datasets/keyword-spotting

