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Objectives

This work addresses the estimation of the squared-
loss mutual information (SMI), focusing on:
•Define an estimate of a surrogate of the
well-known mutual information that acts as a
valuable metric in signal processing applications.

• Interpret the SMI as the Frobenius norm of a
coherence matrix, with direct relations with
other fields on information theory.

•Propose the empirical characteristic function as
an effective mapping for this task.

•Reduce computational complexity by limiting
the feature space dimension, avoiding the kernel
methods mapping.

Introduction

The estimation of information-theoretic measures is an
important task required in numerous signal processing
and machine learning applications. However, the esti-
mation of the well-known Shannon’s mutual informa-
tion from finite realizations is a difficult task. To cope
with this problem, the squared-loss mutual informa-
tion (SMI) has been proposed as a substitute metric:

Is(X ;Y ) =
∑
x∈X

∑
y∈Y

PXY (x, y)− PX(x)PY (y)√
PX(x)PY (y)


2

It is worth noting that whereas Shannon’s mutual
information is the Kullback-Leibler divergence from
pXY (x, y) to pX(x)pY (y), the SMI is the Pearson chi-
squared divergence and operates as a local approxima-
tion of MI. This work shows that SMI can be estimated
from independent and identically distributed samples
as the squared Frobenius norm of a coherence matrix
estimated after mapping the data onto some fixed fea-
ture space. Moreover, low computation complexity is
achieved through the FFT by exploiting the Toeplitz
structure of the involved autocorrelation matrices in
that space.

Discrete SMI

For [p̃]n = PX(xn), [q̃]m = PY (ym) and [J̃ ]n,m =
PXY (xn, ym):

C̃ = [p̃]−1/2 (J̃− p̃q̃T
)

[q̃]−1/2

Is(X ;Y ) =
N∑
n=1

M∑
m=1
|[C̃]n,m|2 = tr

(
C̃TC̃

)
= ||C̃||2F

Let F ∈ CN×N and G ∈ CM×M be unitary matri-
ces, then

Is(X ;Y ) = ||C||2F = ||FC̃GH||2F
= ||P−1/2 (J− pqH)Q−1/2||2F

Is it a coherence matrix?

Let us construct x ∈ F and y ∈ G by the one-to-one
mappings φX(.) : X → F and φY (.) : Y → G:
•We are effectively mapping the events of discrete
sources onto the columns of F and G.

•As a consequence p = E [x], q = E [y],
P = E

[
xxH

]
, Q = E

[
yyH

]
, and J = E

[
xyH

]
.

Therefore, we can express

Is(X ;Y ) =
min(N,M)−1∑

i=1
|λi (C)|2

Fundamental links

•The divergence transition matrix of a discrete
memory-less communication channel is
B = [p̃]−1/2J̃[q̃]−1/2, and so:

C̃ = B− p̃1/2q̃H/2

•The largest singular value of C, is the Hirschfeld-
Gebelein-Rényi maximal correlation coefficient.

•Additionally, the following holds:
0 ≤ Is(X ;Y ) ≤ min(N,M)− 1

Empirical characteristic function

Assume L i.i.d. samples {x(l), y(l)}0≤l≤L−1. Then,
the mapping

x (l)→


ejα(−K)x(l)

ejαKx(l)

 y (l)→


ejα(−K)y(l)

ejαKy(l)


which leads to

Îcs(X ;Y ) = ||P̂−1/2 (Ĵ− p̂q̂H) Q̂−1/2||2F
with the sample means p̂ = 〈x(l)〉L, q̂ = 〈y(l)〉L,
P̂ =

〈
x(l)xH(l)

〉
L
, Q̂ =

〈
y(l)yH(l)

〉
L
, and Ĵ =〈

x(l)yH(l)
〉
L
.

SMI in high feature space dimension

Note that
P̂ =

〈
ejαnx(l)e−jαnTx(l)

〉
L

= toe (p̂a)

for p̂a =
〈
ejαnax(l)

〉
L
and na = [0, 1, · · · , 2K]T .

•For large dimension, Szegö’s theorem establishes
that Toeplitz matrices are asymptotically
diagonalizable by the unitary Fourier matrix.

Therefore, let us express an asymptotic approxima-
tion:
Îacs(X ;Y ) = ||[p̂′]−1/2U

(
Ĵ− p̂q̂H

)
UH[q̂′]−1/2||2F

with U the unitary Fourier matrix, p̂′ =
diag(UP̂UH), and q̂′ = diag(UQ̂UH).

Simulation results
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Figure 1: Mean estimated SMI vs the coherence factor ρ of the
covariance matrix of a bivariate Gaussian distribution.

Conclusion

We have shown that we can measure the SMI after
mapping the values of each random variables to vec-
tors of fixed dimensionality. From this observation,
two implications are explored: the estimator is based
on a coherence matrix, a well-known statistic with mul-
tiple uses on signal processing [1], and computational
savings thanks to the limitation of the feature space.
Unlike the typical cross-validation approach with ker-
nels as plug-in estimates of the PDF, the parameters
selection is based on dual ideas from spectral analysis.
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