Solving Quadratic Equations via Amplitude-based Nonconvex Optimization Vincent Monardo, Yuanxin Li and Yuejie Chi
Department of Electrical and Computer Engineering, Carnegie Mellon University Email: \{vmonardo, yuanxinl, yuejiec\}@andrew.cmu.edu

Quadratic Inverse Problem Setup

- Goal: recover $\boldsymbol{X} \in \mathbb{C}^{n \times r}$ from m quadratic measurements,

$$
y_{i}=\left\|\boldsymbol{a}_{i}^{H} \boldsymbol{X}\right\|_{2}^{2}, \quad i=1, \ldots, m
$$

- This problem has many applications in coherence retrieval in optical imaging, covariance sketching of high-dimensional streaming data for the general rank- r case, and phase retrieval for the rank-1 case.

Geometric Interpretation

- We lose a generalized notion of "phase" in $\mathbb{C}^{r}: \boldsymbol{a}_{i}^{H} \boldsymbol{X} /\left\|\boldsymbol{a}_{i}^{H} \boldsymbol{X}\right\|_{2}$

Amplitude Based Optimization

-Typical approach: minimizing an intensity-based loss function with measurements $y_{i}=\left\|\boldsymbol{a}_{i}^{H} \boldsymbol{X}\right\|_{2}^{2}, \quad i=1, \ldots, m$

$$
\ell_{i n}(\boldsymbol{U})=\frac{1}{m} \sum_{i=1}^{m}\left(y_{i}-\left\|\boldsymbol{a}_{i}^{H} \boldsymbol{U}\right\|_{2}^{2}\right)^{2}
$$

-Provable statistical and computational guarantees, e.g. Li et. al., 2018. - Proposed approach: minimizing an amplitude-based loss function with measurements $z_{i}=\sqrt{y_{i}}, i=1, \ldots, m$,

$$
\ell(\boldsymbol{U})=\frac{1}{m} \sum_{i=1}^{m}\left(z_{i}-\left\|\boldsymbol{a}_{i}^{H} \boldsymbol{U}\right\|_{2}\right)^{2}
$$

[^0]
Why Amplitude-based Loss?

 about Minima

(b) Amplitude-Based

Loss Surface
 Loss Surface

- The curvature of the amplitude based loss surface is similar to the quadratic function around the global optima, see Zhang et. al., 2017.

Algorithmic Approaches

- Step 1: Spectral Initialization

1. With $\left\{z_{i}\right\}_{i=1}^{m}$, and $\left\{\boldsymbol{a}_{i}\right\}_{i=1}^{m}$, create $\boldsymbol{D}=\frac{1}{2 m} \sum_{i=1}^{m} z_{i} \boldsymbol{a}_{i} \boldsymbol{a}_{i}^{H}$
2. Obtain the r normalized eigenvectors $Z_{0} \in \mathbb{C}^{n \times r}$ corresponding to the r largest eigenvalues of D.
3. Obtain the diagonal matrix $\Lambda_{0} \in \mathbb{C}^{r \times r}$, with entries on the diagonal given by $\left[\boldsymbol{\Lambda}_{0}\right]_{i}=\lambda_{i}(\boldsymbol{D})-\lambda, i=1, \ldots, r$ where $\lambda=\frac{1}{m} \sum_{i=1}^{m} z_{i}$ and $\lambda_{i}(\boldsymbol{D})$ is the $i^{\text {th }}$ largest eigenvalue of D.
4. $\boldsymbol{U}_{0}=\boldsymbol{Z}_{0} \boldsymbol{\Lambda}_{0}^{1 / 2}$

- Step 2: Iterative Refinement:
-Gradient Descent (GD):

-Mini-batch Stochastic Gradient Descent (SGD):
$\boldsymbol{U}_{k+1}=\boldsymbol{U}_{k}-\frac{2 \mu_{k}}{m} \boldsymbol{A}_{\Gamma_{k}}^{H} \operatorname{diag}\left(\left\{\left.\frac{\left\|\boldsymbol{a}_{i}^{H} U_{k}\right\|_{2}-z_{z}}{\left\|\boldsymbol{a}_{\boldsymbol{a}^{H}} \mathrm{U}_{k}\right\|_{2}} \right\rvert\, i \in \Gamma_{k}\right\}\right) \boldsymbol{A}_{\Gamma_{k}} \boldsymbol{U}_{k}$
- Alternating Minimization (AltMin):
$\boldsymbol{U}_{k+1}=\boldsymbol{A}^{\dagger} \operatorname{diag}\left(\left[\frac{z_{1}}{\left\|\boldsymbol{a}_{1}^{H} \boldsymbol{U}_{k}\right\|_{2}}, \ldots, \frac{z_{m}}{\left\|\boldsymbol{a}_{m}^{H} \boldsymbol{U}_{U_{k}}\right\|_{2}}\right]\right) \boldsymbol{A} \boldsymbol{U}_{k}$.

Numerical Experiments

Statistical Performance ($n=50$ and $r=4$)

Computational Performance ($n=50, r=4$ and $m=800$)

References

1] Y. Li, C. Ma, Y. Chen, and Y. Chi. Nonconvex matrix factorization from rank-one mea surements. 2018.
2] G. Wang, G. B. Giannakis, and Y. C. Eldar. Solving systems of random quadratic equations via truncated amplitude flow. 2018.
[3] H. Zhang, Y Zhou Y Liang, and Y Chi. A nonconvex approach for phase retrieval: Reshaped Wirtinger flow and incremental algorithms. 2017.

Acknowledgements

This work is supported in part by ONR under the grant N00014-18-1-2142, by ARO un der the grant W911NF-18-1-0303, and by NSF under grants CCF-1806154 and ECCS 1818571.

Carnegie
Mellon
University

[^0]: -Only involves the second power of variable, reducing complexity!
 -Proposed for phase retrieval in Gerchberg-Saxton 1972, Zhang et.al 2017, Wang et. al. 2017.

