Solving Quadratic Equations via Amplitude-based Nonconvex Optimization
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Quadratic Inverse Problem Setup
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e Goal: recover X € C"*" from m quadratic measurements,
H 2 -

e This problem has many applications in coherence retrieval in optical
Imaging, covariance sketching of high-dimensional streaming data for
the general rank-r case, and phase retrieval for the rank-1 case.

Geometric Interpretation
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e We lose a generalized notion of “phase” in C" : a?’ X /||la? X ||

Amplitude Based Optimization

e Typical approach: minimizing an intensity-based loss function with
measurements y; = |lal! X||5, i =1,...,m,
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— Provable statistical and computational guarantees, e.g. Liet. al., 2018.
e Proposed approach: minimizing an amplitude-based loss function with
measurements z; = \/y;, 1t =1,...,m,
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— Only involves the second power of variable, reducing complexity'

— Proposed for phase retrieval in Gerchberg-Saxton 1972, Zhang et.al.
2017, Wang et. al. 2017.

Why Amplitude-based Loss?
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(a) Quadratic Surface (b) Amplitude-Based
Loss Surface

(c) Intensity-Based

about Minima Loss Surface

e The curvature of the amplitude based loss surface is similar to the
guadratic function around the global optima, see Zhang et. al., 2017.

Algorithmic Approaches

e Step 1: Spectral Initialization
1. With {z;}",, and {a;}",, create D = =~ > " | z;a;,a.
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2. Obtain the » normalized eigenvectors Z, € C"*" corresponding to the
r largest eigenvalues of D.

3. Obtain the diagonal matrix A, € C™*", with entries on the diagonal
given by [Agl; = N(D)— X, i=1,..,rwhere A\ =2%"" 2 and \,(D) is
the it largest eigenvalue of D.

4.U, = ZoA)”.
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e Step 2: lterative Refinement:
— Gradient Descent (GD):
_ 24 : lai'Usll2—= la,Usll2—2n

— Mini-batch Stochastic Gradient Descent (SGD):
Ui, =U; — %A{jk diag ({ la;" Ukllo—= 1 € Fk}) AFkUk

la;"Uy2
— Alternating Minimization (AltMin):
— ATA 21 Zm
Uiy = Aldiag ({Ha{{UkHz’ Ha%UkugD AU
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Numerical Experiments

Statistical Performance (n = 50 and r = 4)
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Empirical Success Rate

—6— GD with Amplitude Loss
—x— GD with Intensity Loss
—+— Mini-Batch SGD with Amplitude Loss
—— Alternating Minimization

Possosessrine : o 0 12
Sampling Ratio (m/(nr))

o
)V

Computational Performance (n = 50, »r = 4 and m = 800)
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