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Quadratic Inverse Problem Setup
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Wirtinger flow (Candès, Li, Soltanolkotabi ’14)

Empirical loss minimization

minimizex f(x) = 1
m

mÿ

k=1

Ë!
a€
k x

"2 ≠ yk
È2

• Initialization by spectral method

• Gradient iterations: for t = 0, 1, . . .

xt+1 = xt ≠ ÷t Òf(xt)
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•Goal: recover X ∈ Cn×r from m quadratic measurements,

yi = ‖aHi X‖2
2, i = 1, ...,m.

•This problem has many applications in coherence retrieval in optical
imaging, covariance sketching of high-dimensional streaming data for
the general rank-r case, and phase retrieval for the rank-1 case.

Geometric Interpretation
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•We lose a generalized notion of “phase” in Cr : aHi X/‖aHi X‖2

Amplitude Based Optimization
•Typical approach: minimizing an intensity-based loss function with

measurements yi = ‖aHi X‖2
2, i = 1, ...,m,

`in(U ) =
1

m

m∑
i=1

(
yi − ‖aHi U‖2

2

)2
.

– Provable statistical and computational guarantees, e.g. Li et. al., 2018.
•Proposed approach: minimizing an amplitude-based loss function with

measurements zi =
√
yi, i = 1, ...,m,

`(U ) =
1

m

m∑
i=1

(
zi − ‖aHi U‖2

)2
.

– Only involves the second power of variable, reducing complexity !
– Proposed for phase retrieval in Gerchberg-Saxton 1972, Zhang et.al.

2017, Wang et. al. 2017.

Why Amplitude-based Loss?

(a) Quadratic surface (b) Expected loss of RWF (c) Expected loss of WF

Figure 3: (a) Surface of quadratic function f(z) = min{(z−x)T (z−x), (z+x)T (z+x)} with x = [1− 1]T .
(b) Expected loss function of RWF for x = [1 − 1]T . (c) Expected loss function of WF for x = [1 − 1]T .

Appendix B for expression). It can be seen that the loss of RWF rather than the loss of WF has a similar
curvature to the quadratic function around the global optimums, which justifies its better performance than
WF.

2.3 Geometric Convergence of RWF

We characterize the convergence of RWF in the following theorem.

Theorem 1. Consider the problem of solving any given x ∈ Rn from a system of equations (4) with
Gaussian measurement vectors. There exist some universal constants µ0 > 0 (µ0 can be set as 0.8 in
practice), 0 < ρ, ν < 1 and c0, c1, c2 > 0 such that if m ≥ c0n and µ < µ0, then with probability at least
1− c1 exp(−c2m), Algorithm 1 yields

dist(z(t),x) ≤ ν(1 − ρ)t∥x∥, ∀t ∈ N. (12)

Outline of the Proof. We outline the proof here with details relegated to Appendix C. Compared to WF and
TWF, our proof requires new development of bounding techniques to deal with nonsmoothness, but is much
simpler due to the lower-order loss function that RWF relies on.

We first introduce a global phase notation for real case as follows:

Φ(z) :=
{

0, if ∥z − x∥ ≤ ∥z + x∥,
π, otherwise.

(13)

For the sake of simplicity, we let z be e−jΦ(z)z, which indicates that z is always in the neighborhood of x.

Here, the central idea is to show that within the neighborhood of global optimums, RWF satisfies the
Regularity Condition RC(µ,λ, c) [2], i.e.,

⟨∇ℓ(z), z − x⟩ ≥ µ

2 ∥∇ℓ(z)∥2 + λ

2 ∥z − x∥2 (14)

for all z obeying ∥z − x∥ ≤ c∥x∥, where 0 < c < 1 is some constant. Then, as shown in [2], once the
initialization lands into this neighborhood, geometric convergence can be guaranteed, i.e.,

dist2 (z + µ∇ℓ(z),x) ≤ (1 − µλ)dist2(z,x), (15)

for any z with ∥z − x∥ ≤ c∥x∥.
Lemmas 2 and 3 in Appendix C yield that

⟨∇ℓ(z), z − x⟩ ≥ (1− 0.26− 2ϵ)∥z − x∥2 = (0.74− 2ϵ)∥z − x∥2.
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(a) Quadratic 
Surface

(b) Amplitude-Based
Loss Surface

(c) Intensity-Based
Loss Surface

(a) Quadratic Surface
about Minima

•The curvature of the amplitude based loss surface is similar to the
quadratic function around the global optima, see Zhang et. al., 2017.

Algorithmic Approaches
•Step 1: Spectral Initialization

1. With {zi}mi=1, and {ai}mi=1, create D = 1
2m

∑m
i=1 ziaia

H
i .

2. Obtain the r normalized eigenvectors Z0 ∈ Cn×r corresponding to the
r largest eigenvalues of D.

3. Obtain the diagonal matrix Λ0 ∈ Cr×r, with entries on the diagonal
given by [Λ0]i = λi(D)− λ, i = 1, ..., r where λ = 1

m

∑m
i=1 zi and λi(D) is

the ith largest eigenvalue of D.
4.U0 = Z0Λ

1/2
0 .

•Step 2: Iterative Refinement:
– Gradient Descent (GD):
Uk+1 = Uk − 2µk

m AH diag
([
‖aH1 Uk‖2−z1
‖aH1 Uk‖2 , ...,

‖aHmUk‖2−zm
‖aHmUk‖2

])
AUk.

– Mini-batch Stochastic Gradient Descent (SGD):
Uk+1 = Uk − 2µk

m AH
Γk

diag
({
‖aHi Uk‖2−zi
‖aHi Uk‖2

∣∣∣ i ∈ Γk

})
AΓkUk.

– Alternating Minimization (AltMin):
Uk+1 = A†diag

([
z1

‖aH1 Uk‖2, ...,
zm

‖aHmUk‖2

])
AUk.

Numerical Experiments

Statistical Performance (n = 50 and r = 4)
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Computational Performance (n = 50, r = 4 and m = 800)
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