On the Sensitivity of Spectral Initialization for Noisy Phase Retrieval
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Estimation with spectral methods

e Goal: estimate =¢ € C" from m generalized linear measurements,
y; ~ ply | <ai,wb>), i =1,2,....,m.

e The spectral method estimates " by taking the top eigenvector of a
carefully constructed data matrix of the form:
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where 7 (-) are preprocessing functions of the data.

e For example, for the celebrated phase retrieval problem, the spectral
method can be used to initialize a nonconvex iterative method such as
gradient descent or alternating minimization or provide an anchor vector
to a convex linear program such as the Phasemax.

Key metrics for preprocessing functions

e Preprocessing functions can significantly improve spectral estimation
when they are designed for a given observation model.

e We compare their performance using two key metrics:
— cosine-squared similarity .
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— sampling threshold’

(v, = argmin {Voz > o, liminf E, { p(, azh)} > O} .
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The optimal preprocessing function minimizes the sampling threshold
o, and maximizes p(z, ) for a fixed sample complexity.

Optimal preprocessing functions

Theorem 1 ([1]). Define s = (a;, =*). Then the optimal preprocessing func-
tion for a pair of sensing vectors and noise distribution is given by
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Furthermore, the sampling threshold can be derived as
—1
E, 1 — |s|?
- Wy DA = IsP)r) (2)
o Ed{p(y | [s])}

In the noiseless case, T (y) =1—1/y and o, = 1.

Gaussian and Poisson noise

We derive optimal preprocessing functions tailored to Gaussian noise and
to Poisson noise:
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e Gaussian Noise: 7,(y) =1 — (y — 0 + \/i 55@2;)))
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— Sampling threshold: «, = (1 — o2 — gt e[ exp( ou—u )du>
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e Poisson Noise: 7 (y) = 5, sampling threshold: o, = 2.

e Preprocessing functions are model-dependent; we investigate their per-
formance in the regime where there is a mismatch between the hypoth-
esized noise model and the true noise model.

(d) Estimate w/

for Noiseless Case Optimal Preprocessing

e Example: With additive white Gaussian noise ¢ = 1.0,n = 64 x 64, and
a = 5, We compare no preprocessing, preprocessing for the noiseless
case, and optimal preprocessing.

Sensitivity of sampling thresholds

We assume that a fixed preprocessing function is used to process the
measurements, designed for a postulated noise level aff, while the true
noise level is set at o2, and pinpoint the sampling threshold.
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Figure 1: The sampling threshold «, with respect to the true AWGN noise level o2 for a preprocessing
function designed to be optimal for a postulated noise level a]% =0.2,0.5,1,2,3,5,7, respectively.
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Sensitivity of cosine-squared similarities

We theoretically and emprically demonstrate the cosine-squared similarity
of various preprocessing functions over a wide range of sampling ratios.
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Figure 2: The theoretical prediction and the empirical realizations of the cosine-squared similarity of each
preprocessing function with respect to the sampling ratio under AWGN with o2 = 0.5.
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Figure 3: The theoretical prediction and the empirical realizations of the cosine-squared similarity of each
preprocessing function with respect to the sampling ratio under Poisson noise.
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