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Additional neural network (NN) -

based intra prediction mode for 

hybrid video codecs:

• Block-based predictions

• Optionally available information

• Channel wise prediction

• Signaling and rate-distortion 

decisions

• Low Complexity

Problem Statement: Neural Networks for Intra Prediction
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• Open Problems

• Prediction Network

− Training Methods

− Architecture

• Mode Signaling and Codec Integration

• Results and Evaluation

• Conclusion

Overview
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Architecture:

• Best so far can not be definitely concluded due to 

different training sets

• Only three types of architectures tried so far

Chroma and Cross-Component Prediction:

• No separate consideration of chroma blocks

• No usage of cross component information

Loss Function:

• So far only sum of absolute transform differences (SATD) 

and mean square error (MSE) compared

Signaling:

• Flag causes a lot of overhead

Open Questions
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General Settings:

• Four reference lines input

• Separate Networks for each block size

Compared Variants:

• Purely fully-connected architecture (C0)

• Convolutional layers followed by fully-

connected ones (C1, C2)

Prediction Network – Luma Architecture

C0:

C1:

C2:
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Joint Chroma Channel Prediction:

• Two input and two output channels

• Otherwise same as luma prediction

Cross-Component Adaptation (CRCO):

• Problems:

− Different input shape 

− Different resolution

• Architectural Solution:

− Additional convolutional branch processing 

luma information

− Concatenation before first fully connected 

layer

Prediction Network – Chroma Architecture

C2, without CRCO

C2, with CRCO
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Datasets:

• Extracted samples from 115 raw videos

• Optional input areas masked

• Excluding a portion of the low variance samples possible

without loss of bd-rate gains

Training Methods:

• Adam optimizer

• SATD or L1 loss with regularization term

Problems:

• Overfitting for larger chroma blocks

Prediction Network – Training Methods
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Here: 

• C2 architecture with CRCO

Luma Samples:

• Enables continuing more than 

one direction, circles etc.

• Tending towards mean value 

when continuation unclear/ in 

bottom right corner

Chroma:

• Enables use of additional luma

information 

Prediction Examples and Evaluation
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Integration:

• Implemented in HM16.9 as 36th intra mode

• RD-decision as for any other intra mode

Luma Signaling:

• Most probable mode list extended to four 

items

• New mode always on MPM-list

• Two variants for MPM-list placement

− UP: directly behind neighbors

− END: at the last list position

Chroma Signaling:

• No dedicated signaling for chroma

− Only useable, when used for luma

Mode Integration and Signaling

END

Decision Tree Examples

UP
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From BD-rates:

• SATD outperforms L1

• C2 outperforms C1 and C0 on average

• C0 better for noisy, high resolution content

Further Analysis:

• C2 always better validation loss

• Difference increasing with block size

• C2 more used for 4x4 blocks, C0 for 32x32 blocks in all 

class B sequences

Results – Architecture and Loss

C0:

C1:

C2:
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Results – Dedicated Chroma Prediction

Luma Comparison:

• Small improvement

(-0.2%) without CRCO

• 3 times more gain 

(-0.6%) with CRCO

Chroma Comparison:

• Again small 

improvement (-0.37%) 

without CRCO

• Nearly -1% with CRCO

Without 

CRCO:

With 

CRCO:
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Results – Signaling and Final Evaluation

Signaling:

• UP outperforms end version

− Mode must be used frequently

• Difference not huge

General Evaluation:

• Hard to compare to other 

approaches due to training sets

• Beating other approaches in 

terms of U and V BD-rate gains

END UP
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Conclusion:

• Useful to train separate networks for chroma 

channel prediction and integrate cross component 

information

• Best Architecture depends on content and 

complexity restrictions

• SATD loss better approximation than L1

• Proposed new signaling with less overhead

Outlook:

• More architectures, loss functions

• Multiple predictions

• Complexity reduction

Conclusion and Outlook 
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