Convolutional Neural Networks for Video Intra Prediction Using Cross-component Adaption

Maria Meyer, Jonathan Wiesner, Jens Schneider, Christian Rohlfing

Problem Statement: Neural Networks for Intra Prediction

Additional neural network (NN) based intra prediction mode for hybrid video codecs:

- Block-based predictions
- Optionally available information
- Channel wise prediction
- Signaling and rate-distortion decisions
- Low Complexity

[1] M. Wien, High Efficiency Video Coding – Coding Tools and Specification. Berlin, Heidelberg: Springer, Sept. 2014

Overview

- Open Problems
- Prediction Network
 - Training Methods
 - Architecture
- Mode Signaling and Codec Integration
- Results and Evaluation
- Conclusion

Open Questions

Architecture:

- Best so far can not be definitely concluded due to different training sets
- Only three types of architectures tried so far

Chroma and Cross-Component Prediction:

- No separate consideration of chroma blocks
- No usage of cross component information

Loss Function:

 So far only sum of absolute transform differences (SATD) and mean square error (MSE) compared

Signaling:

Flag causes a lot of overhead

[2] J. Li, B. Li, J. Xu, R. Xiong, and W. Gao, "Fully connected networkbased intra prediction for image coding," IEEE Transactions on Image Processing, vol. 27, no. 7, pp. 3236–3247, July 2018.
[3] Y. Hu, W. Yang, M. Li, and J. Liu, "Progressive spatial recurrent neural network for intra prediction," Computing Research Repository (CoRR), 2018
[4] T. Dumas, A. Roumy, and C. Guillemot, "Context-adaptive neural network based prediction for image compression," Computing Research Repository (CoRR), 2018.
[5] J. Pfaff, P. Helle, D. Maniry, S. Kaltenstadler, W. Samek, H. Schwarz, D. Marpe, and T. Wiegand: Neural Network based Intra Prediction for Video Coding, Proceedings of the SPIE 10752, Applications of Digital Image Processing XLI, San Diego, USA, vol.

1075213, September 2018

Prediction Network – Luma Architecture

General Settings:

- Four reference lines input
- Separate Networks for each block size

Compared Variants:

- Purely fully-connected architecture (C0)
- Convolutional layers followed by fullyconnected ones (C1, C2)

Prediction Network – Chroma Architecture

Joint Chroma Channel Prediction:

- Two input and two output channels
- Otherwise same as luma prediction

Cross-Component Adaptation (CRCO):

- Problems:
 - Different input shape
 - Different resolution
- Architectural Solution:
 - Additional convolutional branch processing luma information
 - Concatenation before first fully connected layer

Prediction Network – Training Methods

Datasets:

- Extracted samples from 115 raw videos
- Optional input areas masked
- Excluding a portion of the low variance samples possible without loss of bd-rate gains

Training Methods:

- Adam optimizer
- SATD or L1 loss with regularization term

Problems:

Overfitting for larger chroma blocks

Sample / Parameters Relation for C2 architecture with CRCO

Blocksize	Luma	Chroma
4	46.29	2.80
8	21.17	0.68
16	7.65	0.12
32	1.10	_

Prediction Examples and Evaluation

Here:

C2 architecture with CRCO

Luma Samples:

- Enables continuing more than one direction, circles etc.
- Tending towards mean value when continuation unclear/ in bottom right corner

Chroma:

 Enables use of additional luma information

Prediction

Prediction Examples and Evaluation

Here:

C2 architecture with CRCO

Luma Samples:

- Enables continuing more than one direction, circles etc.
- Tending towards mean value when continuation unclear/ in bottom right corner

Chroma:

 Enables use of additional luma information

Originals

Integration:

- Implemented in HM16.9 as 36th intra mode
- RD-decision as for any other intra mode

Luma Signaling:

- Most probable mode list extended to four items
- New mode always on MPM-list
- Two variants for MPM-list placement
 - UP: directly behind neighbors
 - END: at the last list position

Chroma Signaling:

- No dedicated signaling for chroma
 - Only useable, when used for luma

Results – Architecture and Loss

From BD-rates:

- SATD outperforms L1
- C2 outperforms C1 and C0 on average
- C0 better for noisy, high resolution content

Further Analysis:

- C2 always better validation loss
- Difference increasing with block size
- C2 more used for 4x4 blocks, C0 for 32x32 blocks in all class B sequences

Loss Function	L1	SATD
BQTerrace	-1.51 %	-1.61 %
BasketballDrive	-1.97 %	-2.30 %
Cactus	-2.08 %	-2.30 %
Kimono	-2.61 %	-3.17 %
ParkScene	-2.75 %	-2.85 %
AVG Class B	-2.18 %	-2.45 %

C0:

Architecture	C2	C1	C0
BQTerrace	-1.79 %	-1.74 %	-1.61 %
BasketballDrive	-2.33 %	-2.28 %	-2.30 %
Cactus	-2.46 %	-2.43 %	-2.30 %
Kimono	-2.66 %	-3.02 %	-3.17 %
ParkScene	-2.55 %	-2.66 %	-2.85 %
AVG Class B	-2.36 %	-2.43 %	-2.45 %
BQMall	-2.00 %	-1.85 %	-1.85 %
BasketballDrill	-1.99 %	-1.96 %	-1.81 %
PartyScene	-1.46 %	-1.39 %	-1.34 %
RaceHorses	-1.89 %	-1.84 %	-1.75 %
AVG Class C	-1.84 %	-1.76 %	-1.69 %
BQSquare	-0.98 %	-0.88 %	-0.79 %
BasketballPass	-1.85 %	-1.51 %	-1.49 %
BlowingBubbles	-1.70 %	-1.74 %	-1.63 %
RaceHorses	-2.43 %	-2.30 %	-2.00 %
AVG Class D	-1.74 %	-1.61 %	-1.48 %
AVG All Classes	-2.01 %	-1.97 %	-1.91 %

Luma Comparison:

- Small improvement (-0.2%) without CRCO
- 3 times more gain (-0.6%) with CRCO

Chroma Comparison:

- Again small improvement (-0.37%) without CRCO
- Nearly -1% with CRCO

Version	with CRCO		wit	without CRCO			no chroma IntraNN		
Channel	Y	U	V	Y	U	V	Y	U	V
BQTerrace	-1.79 %	-0.84 %	-0.36%	-1.66%	-0.75%	-0.79 %	-1.57%	-0.26%	-0.03%
Basket.Drive	-2.33%	-1.64 %	-1.97 %	-1.83%	-0.15%	-0.88%	-1.34%	-0.05%	-0.56%
Cactus	-2.46%	-1.89 %	-2.05%	-1.99%	-1.24%	-1.12%	-1.60%	-0.89%	-0.50%
Kimono	-2.66 %	-2.46%	-1.84 %	-1.71%	-1.60%	-1.41%	-1.62%	-1.46%	-1.26%
ParkScene	-2.55%	-1.75%	-1.91 %	-1.87%	-1.27%	-1.82%	-1.88%	-0.79%	-1.15%
AVG Class B	-2.36%	-1.72%	-1.63%	-1.81%	-1.00%	-1.20%	-1.59%	-0.69%	-0.62%
BQMall	-2.00 %	-1.62 %	-1.57%	-1.71%	-1.22%	-1.05%	-1.58%	-1.37%	-0.36%
BasketballDrill	-1.99 %	-2.42%	-2.26%	-1.21%	-0.38%	-0.74%	-0.63%	-0.17%	-0.21%
PartyScene	-1.46 %	-0.86%	-0.96%	-1.31%	-0.68%	-0.70%	-1.21%	-0.68%	-0.65%
RaceHorses	-1.89 %	-1.28 %	-1.44%	-1.55%	-0.90%	-0.60%	-1.22%	-0.69%	-0.49%
AVG Class C	-1.84 %	-1.55%	-1.56%	-1.45%	-0.80%	-0.77%	-1.16%	-0.73%	-0.43%
BQSquare	-0.98%	-0.65%	-0.28%	-1.04%	-0.55%	0.00%	-1.00%	-0.28%	0.20%
BasketballPass	-1.85%	-1.67 %	-1.36 %	-1.39%	-1.37%	-0.82%	-1.21%	-0.26%	-0.58%
BlowingBubbles	-1.70 %	-1.54%	-0.97 %	-1.40%	-0.60%	-0.43%	-1.32%	-0.58%	-0.37%
RaceHorses	-2.43%	-1.40 %	-2.13%	-1.91%	-1.34%	-1.34%	-1.58%	-0.79%	-0.78%
AVG Class D	-1.74%	-1.32%	-1.19%	-1.44%	-0.97%	-0.65%	-1.28%	-0.48%	-0.38%
AVG All Classes	-2.01 %	-1.54%	-1.47 %	-1.58%	-0.93%	-0.90%	-1.37%	-0.57%	-0.52 %

Signaling:

- UP outperforms end version
 - Mode must be used frequently
- Difference not huge

General Evaluation:

- Hard to compare to other approaches due to training sets
- Beating other approaches in terms of U and V BD-rate gains

Version	END, with CRCO			UP, with CRCO			
Channel	Y	U	V	Y	U	V	
BQTerrace	-1.75%	-0.69%	-0.76%	-1.79 %	-0.84 %	-0.36%	
Basket.Drive	-2.24%	-1.64 %	-2.08%	-2.33%	-1.64%	-1.97%	
Cactus	-2.35%	-1.95%	-2.06 %	-2.46 %	-1.89%	-2.05%	
Kimono	-2.42%	-2.33%	-1.75%	-2.66 %	-2.46%	-1.84 %	
ParkScene	-2.44%	-1.46%	-1.99 %	-2.55 %	-1.75%	-1.91%	
AVG Class B	-2.24%	-1.61%	-1.73%	-2.36%	-1.72%	-1.63%	
BQMall	-1.97%	-1.63%	-1.56%	-2.00 %	-1.62%	-1.57%	
BasketballDrill	-2.00%	-2.17%	-2.03%	-1.99%	-2.42%	-2.26%	
PartyScene	-1.46%	-0.83%	-0.95%	-1.46 %	-0.86%	-0.96 %	
RaceHorses	-1.84%	-1.20%	-1.66 %	-1.89 %	-1.28%	-1.44%	
AVG Class C	-1.82%	-1.46%	-1.55%	-1.84%	-1.55%	-1.56%	
BQSquare	-1.00%	-0.56%	-0.01%	-0.98%	-0.65%	-0.28%	
BasketballPass	-1.78%	-1.76 %	-1.19%	-1.85 %	-1.67%	-1.36%	
BlowingBubbles	-1.69%	-1.74 %	-0.71%	-1.70 %	-1.54%	-0.97 %	
RaceHorses	-2.35%	-1.92 %	-2.14 %	-2.43%	-1.40%	-2.13%	
AVG Class D	-1.71%	-1.50%	-1.01%	-1.74%	-1.32%	-1.19%	
AVG All Classes	-1.94%	-1.53%	-1.45%	-2.01 %	-1.54%	-1.47 %	

Conclusion:

- Useful to train separate networks for chroma channel prediction and integrate cross component information
- Best Architecture depends on content and complexity restrictions
- SATD loss better approximation than L1
- Proposed new signaling with less overhead

Outlook:

- More architectures, loss functions
- Multiple predictions
- Complexity reduction

Thank you for your attention

Questions?

