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Goal

Classical DSP: Signals indexed by time

Graph DSP: Signals indexed by nodes of graphs
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New Discrete Lattice SP:

Signals indexed by a meet/join lattice
* Shift

* Convolution/filtering

* Fourier transform

* Frequency response

Derivation: Algebraic signal processing (ASP)

shift —— convolution —— Fourier transform etc.

Meet/Join Lattices

Meet Semilattice

L a finite set with partial order <: for all a,b,c € L,
o a < qa
e a <b,b<aimpliesa=>
e a <b,b<cimpliesa <c

Meet operation: a A b is largest element < a and < b

Join Semilattice

Analogous with a V b, smallest element > a and > b

Lattice: Meet + Join Semilattice

Examples

D=nh

subset lattice of 3-

element set {x,y,z}
A =1

some meet total order
semilattice lattice

Visualization as graph (a special type)

Meet/join SL has always a minimal/maximal element

Discrete-Lattice SP

Assume a semilattice L with n elements

Signal
S = (SCU)QS'EL - R™

Shifts by g € L

B wzr = (Bopg)wer

Basic (generating) shifts = meet-irreducible elements

Convolution/filtering Filter h = (h,)qer

hx*xs= (Z

linear, shift(s)-invariant

Pure frequencies/frequency response

eigenvectors Y = (ty<z)zer, Y €L

I characteristic function

cigenvalues  h, = Z hq

qgeL, y<q

Fourier transform (Discrete lattice transform)
DLTZI = () yer
Sy = ngy u(z,y)sy
Moebius function u(z,z) =1,

M($,y):_ Z [L(ZU,Z),

r<z<y

Inversion formula provided by lattice theory

Convolution theorem

A

hxs=h®s

Discrete-lattice SP versus discrete-time SP

Concept DLSP DTSP

Signal Sz)zcl (Sk)kze[n]
Filter hq)ger (Fm)meln]
Basic shifts Sznb)zeL, b meet irred. (Sk—l)ke[n]

Convolution s PaSznq D i e Wi

Pure frequency (ty<z)wer, y € L L (W) ke, £ € [n]

mn
. -~ ~ ke
Fourier transform s, = > . u(®,y)s;

Se = Zke[n] W~ Sk

Example

signal on lattice

Shifts by e

(S:BAG):UEL

aformof delay shift matrix for e

Basic shifts: a, b, c, d, f

E.g., e = a A ¢ is not meet-irreducible

Pure frequencies

DLTil = (£)yer =

Fourier transform (Discrete lattice transform)

diagonalizes all shifts and all filters

Example

DLT; - .DLT; " = diag(0,0,1,0,1,0,1,0)

SO OO OO0
SO OO OO

Example: Low-pass filter
frequency response

h=a+c+d+ f
(sum of basic shifts)

“low” frequencies
are amplified

Possible Applications

Set functions (ICASSP 2018, more to come)

Set function = signal on lattice of subsets

S = (SA)AQN
N a finite set, N = A

Signals on graphs representing lattices (e.g., trees)

These have upper triangular adjacency matrices

adjacency matrix (graph shift)

Leverages algebraic graph theory Leverages algebraic lattice theory

One shift Multiple shifts
captures adjacency structure captures lattice structure

No diagonalizing Fourier transform Fourier transform always exists

Signals on hypergraphs

H= (V,E,s: E -+ R), EC 2V, approximately
closed under N

Algebraic Signal Processing (ASP)

Framework to generalize standard, linear, time
DSP using insights from abstract algebra

ASP is constructive: DSP frameworks are derived
from shift definition as shown here

DSP frameworks derived to date:

~
,/

:
1D space shift
(yields DCTs/DST)

1D generic next 2D quincunx
neighbor shift shifts

W,
N
0/ \0

2D hexagonal shifts graph shift set shifts
(yields graph DSP)

http://www.ece.cmu.edu/~smart/
https://acl.inf.ethz.ch/research/asp/




