A Discrete Signal Processing Framework for Meet/Join Lattices

with Applications to Hypergraphs and Trees

Markus Püschel, Computer Science, ETH Zürich

Goal

Classical DSP: Signals indexed by time

Graph DSP: Signals indexed by nodes of graphs

New Discrete Lattice SP:

Signals indexed by a meet/join lattice

- Shift
- Convolution/filtering
- Fourier transform
- Frequency response

Derivation: Algebraic signal processing (ASP)

shift \longrightarrow convolution \longrightarrow Fourier transform etc.

Meet/Join Lattices

Meet Semilattice

L a finite set with partial order \leq : for all $a, b, c \in L$,

- \bullet $a \leq a$
- $a \le b, b \le a \text{ implies } a = b$
- $a \le b, b \le c \text{ implies } a \le c$

Meet operation: $a \wedge b$ is largest element $\leq a$ and $\leq b$

Join Semilattice

Analogous with $a \vee b$, smallest element $\geq a$ and $\geq b$

Lattice: Meet + Join Semilattice

Examples

some meet

semilattice

total order

lattice

subset lattice of 3element set {x,y,z} $\wedge = \cap$

Visualization as graph (a special type)

Meet/join SL has always a minimal/maximal element

Discrete-Lattice SP

Assume a semilattice L with n elements

Signal

$$\mathbf{s} = (s_x)_{x \in L} \in \mathbb{R}^n$$

Shifts by $q \in L$

$$(s_x)_{x\in L}\mapsto (s_{x\wedge q})_{x\in L}$$

Basic (generating) shifts = meet-irreducible elements

Convolution/filtering Filter $\mathbf{h} = (h_q)_{q \in L}$

$$\mathbf{h} * \mathbf{s} = \left(\sum_{q \in L} h_q s_{x \wedge q} \right)_{x \in L}$$

linear, shift(s)-invariant

Pure frequencies/frequency response

eigenvectors
$$\mathbf{f}^y = (\iota_{y \leq x})_{x \in L}, \quad y \in L$$
 characteristic function

eigenvalues $\overline{h}_y = \sum h_q$ $q \in L, y \leq q$

Fourier transform (Discrete lattice transform)

$$DLT_L^{-1} = (\mathbf{f}^y)_{y \in L}$$

$$\widehat{s}_y = \sum_{x \le y} \mu(x, y) s_x$$

Moebius function $\mu(x,x)=1$, $\mu(x,y) = -\sum \mu(x,z),$

Inversion formula provided by lattice theory

Convolution theorem

$$\widehat{\mathbf{h} * \mathbf{s}} = \overline{\mathbf{h}} \odot \widehat{\mathbf{s}}$$

Discrete-lattice SP versus discrete-time SP

Concept	DLSP	DTSP
Signal	$(s_x)_{x\in L}$	$(s_k)_{k\in[n]}$
Filter	$(h_q)_{q \in L}$	$(h_m)_{m\in[n]}$
Basic shifts	$(s_{x \wedge b})_{x \in L}$, b meet irred.	$(s_{k-1})_{k\in[n]}$
Convolution	$\sum_{q \in L} h_q s_{x \wedge q}$	
Pure frequency	$(\iota_{y \le x})_{x \in L}, \ y \in L$	$\sum_{\substack{0 \leq m < n \\ \frac{1}{n}(\omega_n^{-k\ell})_{k \in [n]}, \ \ell \in [n]}} h_m s_{k-m}$
Fourier transform	$\widehat{s}_y = \sum_{x < y} \mu(x, y) s_x$	$\widehat{s}_{\ell} = \sum_{k \in [n]} \omega_n^{k\ell} s_k$

Example

Basic shifts: a, b, c, d, f

E.g., $e = a \wedge c$ is not meet-irreducible

Pure frequencies

$$DLT_L^{-1} = (\mathbf{f}^y)_{y \in L} = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Fourier transform (Discrete lattice transform)

$$DLT_{L} = \begin{bmatrix} 1 & -1 & 0 & -1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

diagonalizes all shifts and all filters

Example

Example: Low-pass filter

frequency response h = a + c + d + f(sum of basic shifts) "low" frequencies

are amplified

Possible Applications

Set functions (ICASSP 2018, more to come)

Set function = signal on lattice of subsets

$$\mathbf{s} = (s_A)_{A \subseteq N}$$

N a finite set, $\cap = \land$

Signals on graphs representing lattices (e.g., trees)

These have upper triangular adjacency matrices

Graph DSP Lattice DSP

Leverages algebraic graph theory One shift captures adjacency structure

Leverages algebraic lattice theory Multiple shifts captures lattice structure No diagonalizing Fourier transform Fourier transform always exists

Signals on hypergraphs

 $H=(V,E,\mathbf{s}:E\to\mathbb{R}),\,E\subseteq 2^V,\,\text{approximately}$ closed under \cap

Algebraic Signal Processing (ASP)

Framework to generalize standard, linear, time DSP using insights from abstract algebra

ASP is constructive: DSP frameworks are derived from shift definition as shown here

DSP frameworks derived to date:

2D hexagonal shifts

1D generic next neighbor shift

2D quincunx shifts

graph shift (yields graph DSP)

set shifts

http://www.ece.cmu.edu/~smart/ https://acl.inf.ethz.ch/research/asp/