

Segmentation, Classification, and Visualization of Orca Calls using Deep Learning

Hendrik Schröter, Elmar Nöth, Andreas Maier, Rachael Cheng, Volker Barth, **Christian Bergler** Pattern Recognition Lab, Friedrich-Alexander University Erlangen-Nürnberg IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) May 12th – 17th 2019, Brighton, United Kingdom (UK)

The Killer Whale (Orcinus orca) [1]

OrcaLab [2]

Covered recording area by the DeepAL [1] expedition and the fixed installed OrcaLab [2] hydrophones

The Orchive [3]

- collected by the OrcaLab [2] and Steven Ness [3]
- 20,000 hours of underwater recordings by using 6 stationary hydrophones (1985–2010)
- 23,511 digitized audio tapes each \sim 45 min.
- Orchive Annotation Catalog (OAC) [3] comprises 15,480 orca/noise labels

DeepAL Fieldwork Data (DLFD) 2017/2018 [1]

- collected via a 15-meter research trimaran
- 1,007 hours of multi-channel underwater recordings
- 89 hours video footage about behavioral data

Example killer whale vocalizations

Outline

Data Corpora and Preprocessing

Segmentation - Network Architecture, Training, and Results

Call Type Classification – Network Architecture, Training, and Results

Visualization – Call Type Features

Conclusion

Data Corpora and Preprocessing

Data Corpora – Orca/Noise Segmentation

Corpora

\sim	split	train	ing	valida	tion	test		
dataset		samples	% orca	samples	% orca	samples	% orca	
OAC ¹	11,504	8,042	84.9	1,711	83.3	1,751	82.4	
AEOTD ²	17,995	14,424	8.9	1,787	15.4	1,784	5.7	
DLFD ³	31,928	23,891	14.2	4,125	30.1	3,912	28.3	
SUM	61,427	46,357	24.8	7,623	38.6	7,447	35.6	

¹ Orchive Annotation Catalog (OAC) [2]

² Automatic Extracted Orchive tape data (AEOTD) [3]

³ DeepAL Fieldwork Data (DLFD) [1]

Data Corpora – Call Type Classification

Corpora

split		trainii	ng	validat	ion	test		
dataset		samples	%	samples	%	samples	%	
CCS ¹	138	102	73.9	19	13.8	17	12.3	
CCN ²	286	198	69.2	41	14.4	47	16.4	
EXT ³	90	63	70.0	12	13.3	15	16.7	
SUM	514	363	70.6	72	14.0	79	15.4	

¹ Call Catalog Symonds (CCS) [2]

² Call Catalog Ness (CCS) [3]

³ Orchive Extension Catalog (EXT)

Data Preprocessing

Preprocessing and Augmentation

- Power-Spectrogram
- Augmentation
 - Amplitude scaling
 - Frequency shift
 - Time stretch
 - Addition of noise spectrograms
 - Trimming / Padding to fixed length
- dB-Normalization

Segmentation – Network Architecture, Training, and Results

Network Architecture and Training

Architecture

ResNet18-based Convolutional Neural Network (CNN) without max-pooling in the first residual layer for a binary classification problem

Network Results

Results

• Test accuracy of 95.0 % (TPR = 93.8 %, FPR = 4.3 %)

Training and validation accuracy of the segmentation model.

Call Type Classification – Network Architecture, Training, and Results

Network Architecture and Training

Architecture

ResNet18-based Convolutional Neural Network (CNN) without max-pooling in the first residual layer for a 12-class problem

Network Results

Results

• Mean test accuracy of 87.0%

Christian Bergler | LME | Segmentation, Classification, and Visualization of Orca Calls using Deep Learning

Network Results

Misclassifications

Reference

N9

Wrong predictions

N2 as N9

N5 as N9

Visualization – Call Type Features

Call Type Feature Visualization

14

Conclusion

Conclusion

- Two-stage approach for robust segmentation and classification
- Applicable on any semi-labeled database
- Real-time factor of 1/25 (NVIDIA GTX 1050) enables on-the-fly detection in the field
- Automatically segment large data corpora followed by a subsequent call type classification
- Direct comparison to other work is difficult (different data corpora and/or approaches) (Steven Ness [3])
- Training call type classifier with only few call type labels
- Increase training data to be more robust against signal variety of real-world data

Thank you for your attention.

Questions?

References I

- ¹C. Bergler, *Deepal fieldwork data 2017/2018 (dlfd)*, https://www5.cs.fau.de/research/data/ (April 2019).
- ²ORCALAB, Orcalab a whale research station on hanson island, http://orcalab.org (September 2018).
- ³S. Ness, "The orchive : a system for semi-automatic annotation and analysis of a large collection of bioacoustic recordings", PhD thesis (Department of Computer Science, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia, Canada, V8P 5C2, 2013), p. 228.
- ⁴A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, "Automatic differentiation in pytorch", in Nips 2017 workshop (2017).

Data Distribution

Call Type Label Distribution

Orca Call Type/ Corpus	N01	N02	N03	N04	N05	N07	N09	N12	N47	echo	whistles	noise	SUM
CCS [2]	33	10	-	21	14	18	26	16		—	—	—	138
CCN [3]	36	—	56	60	—	31	70	—	33	—	_	—	286
EXT	—	-	—		—		—	—	-	30	30	30	90
SUM	69	10	56	81	14	49	96	16	33	30	30	30	514

Orca call type, echolocation, whistle, and noise label distribution of the CCS, CCN, and EXT data corpus

Data Preprocessing

Preprocessing and Augmentation

Data: Training Input Audio A_{inp}

Result: Trainable Spectrogram S_{train}

$$1 \ \mathcal{S}_{inp} \leftarrow 10 \cdot \log_{10}(|\mathcal{FFT}(resamp(mono(\mathcal{A}_{inp}), 44.1 \, \text{kHz}), \text{ffts} = 4096, \, \text{hop} = 441)|^2)$$

2
$$\mathcal{S}_{\textit{train}} \leftarrow \textit{scaleAmplitude}(\mathcal{S}_{\textit{inp}}, \alpha_{\textit{dB}} = \textit{sample}([-6 \, dB, 3 \, dB]))$$

$$\mathcal{S}_{train} \leftarrow shiftPitch(\mathcal{S}_{train}, \alpha = sample([0.5, 1.5]))$$

4
$$S_{train} \leftarrow stretchTime(S_{train}, \alpha = sample([0.5, 2]))$$

5
$$S_{train} \leftarrow compressFrequencies(S_{train}, f_{min} = 500 \text{Hz}, f_{max} = 10\,000 \text{ Hz}, \text{bins} = 256)$$

$$\mathsf{s} \ \mathcal{S}_{\textit{train}} \leftarrow \textit{addNoise}(\mathcal{S}_{\textit{train}}, \textit{sample}(\mathcal{S}_{\textit{noise}}), \mathsf{SNR} = \textit{sample}([\mathsf{12dB}, -\mathsf{3dB}]))$$

$$\gamma S_{train} \leftarrow normalize(S_{train}, dB_{min} = -100 dB, dB_{ref} = 20 dB)$$

8
$$S_{train} \leftarrow trimPad(S_{train}, \text{length} = sample(128))$$

9 return S_{train}

Segmentation Model – Network Training

Training

- implemented and trained using PyTorch [4]
- Adam optimizer ($Ir_{init} = 10^{-5}$, $\beta_1 = 0.5$, $\beta_2 = 0.999$)
- learning rate decayed by a factor of 0.5 if there was no improvement on the validation accuracy for 4 epochs
- training stopped if there was no improvement on the validation accuracy for 10 epochs
- batch size = 32

Classification Model – Network Training

Training

- implemented and trained using PyTorch [4]
- Adam optimizer ($Ir_{init} = 10^{-5}$, $\beta_1 = 0.5$, $\beta_2 = 0.999$)
- learning rate decayed by a factor of 0.5 if there was no improvement on the validation accuracy for 4 epochs
- training stopped if there was no improvement on the validation accuracy for 10 epochs
- batch size = 4

Comparison with previous work: Segmentation

Name	Segment. type	Dataset size	Accuracy	AUC	
Ness [3]	Orca	11041	92.12 %	-	
Ours	Orca	61 427	94.97 %	98.17%	

Comparison with previous work: Classification

Ness [3]

- Classification of 12 pulsed calls
- Mean accuracy of 76 %
- Per class accuracies between 60 % to 92 %

Ours

- Classification of 9 pulsed calls, whistle, echolocation and noise
- Mean test accuracy of 87 %
- Per class accuracy between 50 % to 100 %