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Motivation: Killer whale research

The Killer Whale (Orcinus orca) [1]
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OrcaLab [2]
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Covered recording area by the DeepAL [1] expedition and the fixed installed OrcaLab [2] hydrophones
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Motivation: Killer whale research

The Orchive [3]

• collected by the OrcaLab [2] and Steven Ness [3]
• 20,000 hours of underwater recordings by using 6 stationary hydrophones

(1985–2010)
• 23,511 digitized audio tapes each∼45 min.
• Orchive Annotation Catalog (OAC) [3] comprises 15,480 orca/noise labels

DeepAL Fieldwork Data (DLFD) 2017/2018 [1]

• collected via a 15-meter research trimaran
• 1,007 hours of multi-channel underwater recordings
• 89 hours video footage about behavioral data
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Example killer whale vocalizations
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Spectrograms from three characteristic killer whale sounds.
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Data Corpora and Preprocessing



Data Corpora – Orca/Noise Segmentation

Corpora

dataset
split training validation test

samples % orca samples % orca samples % orca

OAC1 11,504 8,042 84.9 1,711 83.3 1,751 82.4
AEOTD2 17,995 14,424 8.9 1,787 15.4 1,784 5.7
DLFD3 31,928 23,891 14.2 4,125 30.1 3,912 28.3

SUM 61,427 46,357 24.8 7,623 38.6 7,447 35.6

1 Orchive Annotation Catalog (OAC) [2]
2 Automatic Extracted Orchive tape data (AEOTD) [3]
3 DeepAL Fieldwork Data (DLFD) [1]
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Data Corpora – Call Type Classification

Corpora

dataset
split training validation test

samples % samples % samples %

CCS1 138 102 73.9 19 13.8 17 12.3
CCN2 286 198 69.2 41 14.4 47 16.4
EXT3 90 63 70.0 12 13.3 15 16.7

SUM 514 363 70.6 72 14.0 79 15.4
1 Call Catalog Symonds (CCS) [2]
2 Call Catalog Ness (CCS) [3]
3 Orchive Extension Catalog (EXT)
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Data Preprocessing

Preprocessing and Augmentation

• Power-Spectrogram

• Augmentation

• Amplitude scaling
• Frequency shift
• Time stretch
• Addition of noise spectrograms
• Trimming / Padding to fixed length

• dB-Normalization
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Segmentation – Network Architecture, Training,
and Results



Network Architecture and Training

Architecture
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ResNet18-based Convolutional Neural Network (CNN) without max-pooling in the first residual layer for a binary
classification problem
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Network Results

Results

• Test accuracy of 95.0 % (TPR = 93.8 %, FPR = 4.3 %)
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Training and validation accuracy of the segmentation model.
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Call Type Classification – Network Architecture,
Training, and Results



Network Architecture and Training
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ResNet18-based Convolutional Neural Network (CNN) without max-pooling in the first residual layer for a
12-class problem
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Network Results

Results

• Mean test accuracy of 87.0 %
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Confusion matrix from the call type classifier.
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Network Results

Misclassifications
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Visualization – Call Type Features



Call Type Feature Visualization
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Conclusion



Conclusion

• Two-stage approach for robust segmentation and classification

• Applicable on any semi-labeled database

• Real-time factor of 1/25 (NVIDIA GTX 1050) enables on-the-fly detection in

the field

• Automatically segment large data corpora followed by a subsequent call type

classification

• Direct comparison to other work is difficult (different data corpora and/or

approaches) (Steven Ness [3])

• Training call type classifier with only few call type labels

• Increase training data to be more robust against signal variety of real-world

data
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Thank you for your attention.

Questions?
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Data Distribution

Call Type Label Distribution

Orca Call Type/
Corpus N01 N02 N03 N04 N05 N07 N09 N12 N47 echo whistles noise SUM

CCS [2] 33 10 — 21 14 18 26 16 — — — — 138
CCN [3] 36 — 56 60 — 31 70 — 33 — — — 286
EXT — — — — — — — — — 30 30 30 90

SUM 69 10 56 81 14 49 96 16 33 30 30 30 514

Orca call type, echolocation, whistle, and noise label distribution of the CCS, CCN, and EXT data corpus
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Data Preprocessing

Preprocessing and Augmentation

Data: Training Input AudioAinp

Result: Trainable Spectrogram Strain

1 Sinp← 10 · log10(|FFT (resamp(mono(Ainp),44.1kHz), ffts = 4096, hop = 441)|2)
2 Strain← scaleAmplitude(Sinp,αdB = sample([−6dB,3dB]))

3 Strain← shiftPitch(Strain,α = sample([0.5,1.5]))

4 Strain← stretchTime(Strain,α = sample([0.5,2]))

5 Strain← compressFrequencies(Strain, fmin = 500Hz, fmax = 10000Hz,bins = 256)

6 Strain← addNoise(Strain,sample(Snoise),SNR = sample([12dB,−3dB]))

7 Strain← normalize(Strain,dBmin =−100dB,dBref = 20dB)

8 Strain← trimPad(Strain, length = sample(128))

9 return Strain
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Segmentation Model – Network Training

Training

• implemented and trained using PyTorch [4]
• Adam optimizer (lrinit = 10−5, β1 = 0.5, β2 = 0.999)
• learning rate decayed by a factor of 0.5 if there was no improvement on the

validation accuracy for 4 epochs
• training stopped if there was no improvement on the validation accuracy for

10 epochs
• batch size = 32
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Classification Model – Network Training

Training

• implemented and trained using PyTorch [4]
• Adam optimizer (lrinit = 10−5, β1 = 0.5, β2 = 0.999)
• learning rate decayed by a factor of 0.5 if there was no improvement on the

validation accuracy for 4 epochs
• training stopped if there was no improvement on the validation accuracy for

10 epochs
• batch size = 4
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Comparison with previous work: Segmentation

Name
Segment. Dataset

Accuracy AUC
type size

Ness [3] Orca 11041 92.12 % –

Ours Orca 61427 94.97 % 98.17%

Christian Bergler | LME | Segmentation, Classification, and Visualization of Orca Calls using Deep Learning ICASSP 2019, Brighton, UK 21



Comparison with previous work: Classification

Ness [3]

• Classification of 12 pulsed calls

• Mean accuracy of 76%

• Per class accuracies between 60%

to 92%

Ours

• Classification of 9 pulsed calls,

whistle, echolocation and noise

• Mean test accuracy of 87%

• Per class accuracy between 50%

to 100%
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