BILINEAR REPRESENTATION FOR LANGUAGE-BASED IMAGE EDITING
USING CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS
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Existing literature on LBIE using cGAN | - a high-resolution images. We S
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text representations using one of two conditioning methods. The — for learning conditional bilinear — ~x _—— w =
first is concatenation. The second improved approach is Feature- . - . W (Rank(W <2) representations. We add some
wise Linear Modulation (FiLM) [2], which seeks to mimic the 3 4 P L o~ an o shortcuts to guarantee model’s Fig 2. Network overview
human attention mechanism. Feature-wise il [K_H X [K_H PN —— }ﬂ - capability to learn identical mapping,
bilinear modulation: C and adopts a low-rank bilinear method [3] to simplified the calculation
4 P ‘ ’ of bilinear transformation.
- The lady wore a white — ' Concatenation and FiLM only apply a linear transformation between the input and conditional features.
(%  sleeveless dress In this work, we go a step further and generalize these linear methods to the more powerful bilinear Adversarial training objective
) version, which can provide richer representations than linear models by learning the second-order For7 —mismatching text, t &> matching text,# — manipulating text.
Fig 1. LBIE for fashion generation. interaction. The discriminator D is trained distinguish semantically differentiated
Image-text pairs:
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Qualitative evaluation: The generator G is trained to generate more semantically similar images
Fig 3 shows the performance of traditional cGAN, FiLM and our method on Caltech-200 bird dataset [4], Oxford-102 flower dataset [5] and Fashion Synthesis dataset [6]. with the editing text ¢ :
Quantitative evaluation: L,=E.,, [( D(G(x, p(1)), ¢(;))_1)2]
Inception score (IS) is used for quantitative evaluation. Diverse and meaningful images can get larger inception score. Table 1 shows IS for traditional cGAN model, FiLM and

three variants of our method (Bil-R2, Bil-R64 and Bil-R256 for rank constraint d=2,64,256)
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Baseline  1.92+0.05 ~ 503+062  8.65%133 In this work, we propose a conditional GAN based encoderdecoder
architecture to semantically manipulate images by text descriptions. A
general condition layer called Bilinear Residual Layer (BRL) is proposed
Bil-R2 2.60+£0.11  493%039  9.30+1.48 to learn more powerful bilinear representations for LBIE. BRL is also
applicable for other common conditional tasks. Our evaluation results

This little bird is mostly
white with a black
superciliary and primary.

FiLM 2.5910.11 4.8310.48 8.781.43

This flower has petals
that are yellow at the
edges and spotted
orange near the center.

Bil-R64 2.6310.17 5.40+0.62 10.94+2.28
. on Caltech-200 bird dataset, Oxford-102 flower dataset and Fashion
vorbauihan Bil-R256  2.76+0.08  6.26+0.44  11.63+2.15 Synthesis dataset achieve plausible effects and outperform the state-of-
Table 1. The comparison of IS score of methods art methods on LBIE.
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