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Problem Formulation
Setting: Critical to accurate reconstruction of sparse signals from low-
dimensional low-photon count observations is the solution of nonlinear
optimization problems that promote sparse solutions.

Goal: Analyze zero-finding methods for solving the p-norm regularized
minimization subproblems arising from a sequential quadratic approach.

Observation Model
Photon-limited data observations generally follow a Poisson distribution
with a certain mean detector photon intensity [1], i.e.,

y ∼ Poisson(Af∗),

where
y ∈ Zm+ = a vector of observed photon counts,
f∗ ∈ Rn+ = the vector of true signal intensity,
A ∈ Rm×n+ = the system matrix.

Approach: The unknown signal f∗ is estimated using the maximum likeli-
hood principle.

Nonconvex Optimization Problem
The Poisson reconstruction problem with a non-convex p-norm penalty
term has the following constrained optimization form:

minimize
f∈Rn

Φ(f) ≡ F (f) + τ ‖f‖pp (1)

subject to f � 0,

where τ > 0 is a regularization parameter, F (f) is the negative Poisson
log-likelihood function

F (f) = 1TAf −
m∑
i=1

yi log(eTi Af + β),

where 1 is an m-vector of ones, ei is the i-th column of the m×m identity
matrix, β > 0 (typically β � 1), and ‖f‖pp =

∑n
i=1 |fi|p (0 ≤ p < 1),

which bridges the convex `1 norm to the `0 counting seminorm.

Seperable Quadratic Subproblems
To solve the minimization problem in (1), F (f) is approximated by second-
order Taylor series expansion, where the Hessian in the Taylor series is
replaced by a scaled identity matrix αkI, where αk > 0 [2, 3, 4]. A simple
manipulation to this quadratic approximation will lead into a sequence of
subproblems of the form

fk+1 = arg min
f∈Rn

1

2
‖ f − sk ‖22 +

τ

αk
‖f‖pp (2)

subject to f � 0,

where
sk = fk − 1

αk
∇F (fk).

Note that the subproblem (2) can be separated into scalar minimization
problems of the form

f∗s = arg min
f∈R

Ωs(f ) =
1

2
(f − s)2 + λ|f |p,

subject to f ≥ 0. (3)

where f and s denote elements of the vectors f and sk respectively and
λ = τ/αk [5].

Minimizing the Scalar Subproblem
Given a regularization parameter λ > 0 and p-norm for Ωs(f ) in (3), there
exists a threshold value γp(λ) (that explicitly depends on p and λ) such that
if s ≤ γp(λ), the global minimum of (3) is f∗s = 0; otherwise, the global
minimum will be a non-zero value (see Fig. 1).

Figure 1: The plot of the scalar quadratic function Ωs(f ), where p = 0.5 and λ = 1.0. (a)
When s < γp(λ), then f ∗s = 0 is the unique global minimum. (b) When s = γp(λ), there
are global minima at f ∗ = 0 and f ∗γ . If s > γp(λ), then the global minimum is uniquely at
some f ∗s > 0.

Computing the Threshold Value γp(λ)
When s = γp(λ), there exists f∗γ such that

Ωγ(f∗γ ) = Ωγ(0) and Ω′γ(f∗γ ) = 0. (4)

By solving (4) simultaneously, we can explicitly find the threshold value
γp(λ) for given p and λ values [6]. Specifically,

γp(λ) = (2λ(1− p))
1

2−p + λp(2λ(1− p))
p−1
2−p and f∗γ = (2λ(1− p))

1
2−p.

For any s > γp(λ), the unique minimum f∗s of Ωs(f ) is greater than 0 and
is obtained by setting Ω′s to 0:

Ω′s(f
∗
s ) = f∗s − s + λp(f∗s )p−1 = 0. (5)

We now describe zero-finding algorithms to compute the root f∗s .

Zero-Finding Algorithms
Fixed-point iteration method: The fixed-point iteration method defines a
sequence of points {fn} given by fn+1 = G(fn). Previous methods (see,
e.g., [5, 6]) for finding the root of Ω′s(f ) use the fixed point iteration:

fn+1 = G(fn) = s− λpfp−1
n .

Newton’s method: The iterations for Newton’s method are given by

fn+1 = fn −
Ω′s(fn)

Ω′′s(fn)
=
sf

2−p
n + λp(p− 2)fn

f
2−p
n + λp(p− 1)

.

Initialization
If s = γp(λ) + ε for some ε > 0, we now analyze how to estimate f∗s to
initialize the above zero-finding methods.

First-order Taylor series approximation: To define the initial point, we
can linearize Ω′s(f ) around f∗γ and find the zero of the linearization. This
leads to the initialization

f0
s = f∗γ + δ, where δ =

ε

1 + λp(p− 1)(f∗γ )p−2
.

Second-order Taylor series approximation: Similarly, we can use a
second-order Taylor approximation to Ω′s around f∗γ , which yields the fol-
lowing approximation:

f0
s = f∗γ + δ, where δ =

−b +
√
b2 − 4ac

2a
,

where a =
λp(p−1)(p−2)

2 (f∗γ )p−3, b = 1 + λp(p− 1)(f∗γ )p−2, and c = −ε.

f
0 1 2 3 4 5

-1

0

1

2

3

4

5

f ∗
γ

Ω′
γ(f)

ℓ(f)=f−s

Quadratic Approximation
Linear Approximation

Figure 2: Approximations to Ω′γ(f ) centered at f ∗γ . As f increases, both the linear
and quadratic Taylor approximation diverge from Ω′γ(f ). In contrast, the approximation
`(f ) = f − s, which are the first two terms in Ω′γ(f ), is more accurate for large values of
f .

Bounds on f ∗s
The following lemma allows us to describe the asymptotic behavior of f∗s .

Lemma 1. Let λ > 0 and 0 ≤ p < 1. Then for s ≥ γp(λ), λp(1 −
p)(f∗s )p−2 ≤ p

2.

Theorem 1. For λ > 0 and 0 ≤ p < 1, the minimizer, f∗s , of Ωs is bounded
by f∗s ≤ s. If 0 ≤ p ≤ 1

2, then the minimizer is further bounded by
2
3s ≤ f∗s ≤ s.

Note that Theorem 1 implies that as s increases, so does f∗s . Moreover, as
s → ∞, (f∗s )p−1 → 0, and therefore, by (5), f∗s → s. Thus, a sensible
initial estimate for f∗s is s.

Guarantee of Convergence
Fixed point iteration method: Let en = fn − f∗ and en+1 = fn+1 − f∗
represent the errors on the n-th and n+1-th iterations respectively. For fixed
point iteration, we have

en+1 = fn+1 − f∗ = G(fn)− f∗ = enG
′(f∗) + e2

nG
′′(ξ).

For small en, en+1 ≈ enG
′(f∗). In our context, G(f ) = s −

λpfp−1 and G′(f ) = λp(1− p)fp−2. By Lemma 1, G′(f ) < 1. There-
fore, the error is decreasing and the fixed point iteration method is guaran-
teed to converge.

Newton’s method: Let fc be a critical point of Ω′s(f ) i.e. Ω′′s(fc) = 0.
In particular, fc = (λp(1 − p))

1
2−p and for any f > fc, Ω′′s(f ) = 1 +

λp(p − 1)fp−2 > 0 i.e. Ω′s(f ) is increasing in the interval (fc,∞). Then,
Ω′′′s (f ) = λp(p − 1)(p − 2)fp−3 > 0 for all f ∈ (0,∞), which implies
Ω′s(f ) is convex. Finally, we note that fc < (2λp(p − 1))

1
2−p = f∗γ ≤ f∗,

i.e Ω′s(f ) has a root in (fc,∞). Therefore, Ω′s(f ) is increasing, convex, and
has a zero in (fc,∞), and Newton’s method is guaranteed to converge from
any starting point in the interval (fc,∞) (see [7]).

Rate of Convergence
For fixed point iteration, the number of iterations required to converge:

nFixed Point ≥
ln ε− ln |e0|

lnC1
,where C1 = λp(1− p)(f∗s )p−2.

For Newton’s method, the number of iterations required to converge:

nNewton ≥
1

ln 2
ln

(
lnC2 + ln ε

lnC2 + ln e0

)
,where C2 =

1

2

λp(1− p)(2− p)(f∗s )p−3

1− λp(1− p)(f∗s )p−2
.

Example: When p = 0.5, λ = 1, ε = 10−8, e0 = s − f∗, and
γp(λ) ≤ s ≤ 11, the theoretical number of iterations required to converge
is given in Fig. 3.

Figure 3: Theoretical number of iterations required to converge as a function of s.

Note that when s is near γp(λ) (e.g., s ≈ 1.5), the fixed-point iteration
method takes many more iterations than Newton’s method. For large s,
fixed-point iterations only require four iterations. However the number of
floating point operations for fixed-point iterations is much smaller than that
for Newton’s method. Since s can take on any real value, we expect the
average performance of fixed-point iteration and Newton’s method will be
comparable.

Numerical Experiments
We reconstructed a 3D cubic phantom in fluorescence molecular tomogra-
phy with two embedded fluorescence capillary rods inside it. Fig. 4 shows
the true signal (f∗) and our reconstruction.
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Figure 4: (a) Horizontal slices of a simulated fluorescence capillary rod targets. (b) Re-
construction using p-norm (p = 0.74) regularized subproblem minimization.

Method Time (sec) Iterations
Fixed-point iteration 21.2829 1,281,974

Newton’s method 21.0128 476,585

Table 1: Time and iteration average over 10 trials for fixed-point iteration and Newton’s
method to reconstruct the fluorescence molecular tomography data.

While Newton’s method in theory should converge to the solution faster
than fixed-point iterations, the number of floating-point operations needed
to perform each iteration offsets the computational advantage of using
derivative information.
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