SIMPLE COOPERATIVE TRANSMISSION SCHEMES FOR UNDERLAY SPECTRUM SHARING USING SYMBOL-LEVEL PRECODING AND LOAD-CONTROLLED ARRAYS

Konstantinos Ntougias¹, Dimitrios Ntaikos¹, Constantinos B. Papadias¹, George K. Pagageorgiou²

¹Athens Information Technology (AIT), Athens, Greece

²Heriot-Watt University, Edinburgh, UK

E-mail: {kontou, dint, cpap}@ait.gr, g.papageorgiou@hw.ac.uk

SS-L4: Special Session on Signal Processing for Emerging Wireless Hardware Architectures ICASSP 2019, Brighton, UK, May 15, 2019

AIT CENTER OF EXCELLENCE FOR RESEARCH AND EDUCATION

Outline

- 1. Introduction
- 2. System Setup
- 3. Signal and Channel Models
- 4. Problem Formulation
- 5. Solution
- 6. Algorithm
- 7. Load-Controlled Antenna Arrays
- 8. Joint Beam Selection and Precoding (JBSP)
- 9. Symbol-Level ZF Precoding
- **10.** Performance Evaluation via Numerical Simulations
- **11. Summary and Conclusions**

Introduction

- Sub-6 GHz spectrum will be an important part of the 5G landscape.
- The scarcity of spectral resources and the stringent capacity requirements of 5G services, though, necessitate the use of spectral efficiency (SE) enhancement technologies.
- Examples include coordinated multi-point (CoMP) and spectrum sharing.
- The combination of CoMP and underlay spectrum sharing promises substantial SE gains.
- However, this concept has been largely overlooked in the literature.
- The use of load-controlled antenna arrays (LC-AA) and symbol-level (SL) precoding can further enhance the performance of CoMP cellular networks.
- Nevertheless, the corresponding research works do not consider a spectrum sharing setup.
- In this paper, we fill this gap in the literature.
- We focus on the use of standard precoding schemes and simple yet novel power allocation methods that can be applied in commercial setups.

System Setup

---> Reverse Inter-System CCI CCI: Co-Channel Interference.

Signal and Channel Models

• The received signal at MS_{km} is given by:

• In matrix form:

$$\mathbf{y} = \mathbf{HWP}^{1/2}\mathbf{s} + \sqrt{P}\mathbf{h}d + \mathbf{n}$$

K. Ntougias, D. Ntaikos, C. B. Papadias, G. K. Papageorgiou, "Simple Cooperative Transmission Schemes for Underlay Spectrum Sharing Using Symbol-Level Precoding and Load-Controlled Arrays," *ICASSP*, Brighton, UK, May 12-17, 2019.

5

Signal and Channel Models

• The received signal at RX_{PS} is given by:

$$y = g\sqrt{P}d + \sum_{m=1}^{M} \sum_{k=1}^{K} \mathbf{g}_{m}^{\dagger} \mathbf{w}_{mk}^{m} \sqrt{P_{mk}^{m}} s_{mk}^{m} + z$$
Data
Forward
Inter-System
CCI

• Let us apply Zero-Forcing (ZF) precoding in a spectrum-sharing agnostic manner:

$$\mathbf{W}^{(\mathrm{ZF})} = \mathbf{H}^{\#} = \mathbf{H}^{\dagger} (\mathbf{H}\mathbf{H}^{\dagger})^{-1}$$

• Then both the intra-cell and inter-cell CCI are eliminated and the SINR at MS_{km} is given by:

$$\gamma_{km} = \frac{\left| (\mathbf{h}_{km}^m)^{\dagger} (\mathbf{w}_{mk}^m)^{(\mathrm{ZF})} \right|^2 P_{mk}^m}{|h_{km}|^2 P + 1}$$

Problem Formulation

$$\max_{\substack{P_{mk}^{m} \\ P_{mk}^{m} \\ R}} R = \sum_{m=1}^{M} \sum_{k=1}^{K} \log_{2}(1 + \gamma_{km})$$
Sum-SE
$$P_{mk}^{m} \ge 0$$
Nonnegative Power Constraints
$$\sum_{k=1}^{K} P_{mk}^{m} \le P_{T}$$
Sum-Power Constraints
$$\sum_{m=1}^{M} \sum_{k=1}^{K} \left| \mathbf{g}_{m}^{\dagger}(\mathbf{w}_{mk}^{m})^{(\mathbb{Z}F)} \right|^{2} P_{mk}^{m} \le P_{I}$$
Interference Power Constraint

Convex problem (thus having a unique solution), since ZF precoding eliminates the inter-user coupling through the interference components.

Solution

• Interference-Constrained Power Allocation (ICPA):

$$P_{mk}^{m} = \left(\frac{1}{\ln 2(\nu_m + \mu \alpha_{mk}^{m})} - \frac{1}{\lambda_{mk}^{m}}\right)^{+}$$
(1)

$$\lambda_{mk}^{m} = \frac{\left| (\mathbf{h}_{km}^{m})^{\dagger} (\mathbf{w}_{mk}^{m})^{(\mathrm{ZF})} \right|^{2}}{|h_{km}|^{2}P + 1}$$

$$\alpha_{mk}^m = \left| \mathbf{g}_m^\dagger(\mathbf{w}_{mk}^m)^{(\mathrm{ZF})} \right|^2$$

• This power-allocation method can be applied heuristically for other linear precoding or even symbol-level precoding schemes as well.

Algorithm

Algorithm 1 ICPA Algorithm 1: procedure ICPA($\lambda_{mk}^m, \alpha_{mk}^m, P_T, P_I$) Initialize: μ_{\min}, μ_{\max} 2: while $|\mu_{\max} - \mu_{\min}| > \delta_{\mu}$ do 3: $\mu = \left(\mu_{\min} + \mu_{\max}\right)/2$ 4: for m = 1 to M do 5: Find min $(\nu_m), \nu_m \ge 0$: 6: $\sum_{k=1}^{K} \left(P_{mk}^{m} \right)^{+} \le P_{T}$ Compute P_{mk}^m according to Eq. (1) 7: if $\sum_{m=1}^{M} \sum_{k=1}^{K} a_{mk}^{m} P_{mk}^{m} \geq P_I$ then 8: 9: $\mu_{\min} = \mu$ else 10: 11: $\mu_{\rm max} = \mu$ **Output:** P_{mk}^m , m = 1, ..., M; k = 1, ..., K12:

K. Ntougias, D. Ntaikos, C. B. Papadias, G. K. Papageorgiou, "Simple Cooperative Transmission Schemes for Underlay Spectrum Sharing Using Symbol-Level Precoding and Load-Controlled Arrays," *ICASSP*, Brighton, UK, May 12-17, 2019.

Load-Controlled Antenna Arrays (1/3)

Load-Controlled Antenna Arrays (2/3)

Load-Controlled Antenna Arrays (3/3)

We can perform channel-aware precoding with LC-AAs by mapping the precoded signals onto the antenna currents:

 $\mathbf{i} = \mathbf{W}\mathbf{s}$ Precoding: $\mathbf{y} = \mathbf{HWs} + \mathbf{n}$

Then, we have to calculate the corresponding loading values that will generate these currents through the generalized Ohm's law:

$$\mathbf{i} = (\mathbf{Z} + \mathbf{Z}_L)^{-1} \mathbf{v}$$

However, we should ensure that the real part of the input impedance (which depends on the loads and, therefore, on the precoded signal) is positive to achieve high radiation efficiency.

Joint Beam Selection and Precoding (JBSP)

- **1.** Learning: The MSs report the channel estimates or the SINR for each beam combination.
- **2. Beam Selection:** The best beam combination (in terms of sum-SE) is selected.
- **3. Transmission:** Precoded signals are transmitted over the selected beams.

Symbol-Level ZF Precoding

- This precoding scheme "zero-forces" only the destructive interference (at symbol level) and leaves unaffected the constructive interference.
- It improves the performance in the low-SNR regime.
- Calculation of the precoding matrix symbol-by-symbol (Binary Phase Shift Keying (BSPK) input assumed, i.e., $s_i = \pm 1$):

$$\mathbf{W}^{(\mathsf{CIZF})} = \mathbf{W}^{(\mathsf{ZF})}\mathbf{T} = \mathbf{H}^{\dagger}\mathbf{R}^{-1}\mathbf{T}$$
$$\mathbf{R} = \mathbf{H}\mathbf{H}^{\dagger}$$
$$\mathbf{G} = \operatorname{diag}(\mathbf{s})\operatorname{Re}(\mathbf{R})\operatorname{diag}(\mathbf{s})$$
$$\tau_{kk} = \rho_{kk}$$
$$\begin{cases} \tau_{km} = 0 \quad \text{if } g_{km} < 0\\ \tau_{km} = \rho_{km} \quad \text{otherwise} \end{cases}$$

Performance Evaluation via Numerical Simulations (1/3)

K. Ntougias, D. Ntaikos, C. B. Papadias, G. K. Papageorgiou, "Simple Cooperative Transmission Schemes for Underlay Spectrum Sharing Using Symbol-Level Precoding and Load-Controlled Arrays," *ICASSP*, Brighton, UK, May 12-17, 2019.

Performance Evaluation via Numerical Simulations (2/3)

K. Ntougias, D. Ntaikos, C. B. Papadias, G. K. Papageorgiou, "Simple Cooperative Transmission Schemes for Underlay Spectrum Sharing Using Symbol-Level Precoding and Load-Controlled Arrays," *ICASSP*, Brighton, UK, May 12-17, 2019.

ATIO

OF EXCELLENCE FOR RESEARCH

Performance Evaluation via Numerical Simulations (3/3)

K. Ntougias, D. Ntaikos, C. B. Papadias, G. K. Papageorgiou, "Simple Cooperative Transmission Schemes for Underlay Spectrum Sharing Using Symbol-Level Precoding and Load-Controlled Arrays," *ICASSP*, Brighton, UK, May 12-17, 2019.

17

Summary and Conclusions

- A coordinated beamforming (CBF) and interference-constrained power allocation (ICPA) strategy that maximizes the sum-SE of cellular networks in underlay spectrum sharing setups has been derived in this work.
- The application of standard linear precoding schemes has been considered (MRT, ZF, RZF).
- Also, the use of SL ZF precoding which exploits the constructive symbol-level interference to improve the performance at the low SNR regime has been studied.
- Furthermore, a joint beam selection and precoding (JBSP) method that enables us to perform arbitrary channel-dependent precoding with LC-AAs is presented.
- This method performs beamforming in the analog domain followed by beam selection (switching) and digital precoding to overcome the load computation difficulties.
- Load-controlled antenna arrays improve the performance for a target cost and energy consumption (# of RF chains) thanks to their higher array gain / narrower beams.
- Numerical simulations indicate that this technique performs significantly well for smallto-moderate IPT values and highlight the performance gains of LC-AAs and SL precoding.

Energy-autonomous portable access points for infrastructure-less networks http://painless-itn.com/

Konstantinos Ntougias

Athens Information Technology (AIT)

Email: kontou@ait.gr