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Action recognition

« Task: Classify video sequences based on their constituent
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« Additional modalities are typically used to supplement
RGB frames, such as optical flow:
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Background: Action recognition

« Before deep learning — dense trajectories using optical
flow:
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Background: Action Recognition

State-of-the-art deep learning methods:

a) LSTM + CNN b) Flow + RGB c) 3D RGB CNN
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Active Pixel Sensing

* Motion vectors and optical flow both require active pixel
sensing (APS) video
* APS video is cumbersome for multimodal frameworks due
to:
— Limited framerate
— Calibration problems under irregular camera motion
— Blurriness/distortion with varying illumination
— High power requirements



Neuromorphic Vision Sensing

* Neuromorphic Vision Sensing (NVS) cameras emulate the
photoreceptor-bipolar-ganglion cell information flow.

« Their output consists of asynchronous ON/OFF spike
events

 The events are recorded as tuples indicating spatio-
temporal position and polarity

(a) APS video (b) NVS video (c) NVS camera



APS vs NVS

« Advantages of NVS over APS:
— Much higher framerates (up to 2000 FPS)
— Lower power consumption (on the order of 10mW)
— More robust to distortions

* Disadvantages of NVS over APS:
— NVS events are typically sparse and more difficult to train on

— There is currently a scarcity of labelled NVS data for training
compared to APS



Our Proposal

« We want to reduce the acquisition and sensing complexity
In the multimodal framework

« We propose to replace the APS modalities with NVS frame
representations

« To circumvent the disadvantages of NVS:

— Difficulty in training: Train with supervision from optical flow
data in a teacher-student framework

— Scarcity of real labelled data: Embed an NVS emulator

(PIX2NVS) into the learning framework for NVS emulation
from APS video



Teacher-Student Framework

Training
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Teacher-Student Framework

* For a distribution of student NVS frame volumes V¢,
teacher flow volumes V; and labels Y:

Standard weighted cross entropy loss with labels
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Teacher-student weighted cross entropy loss

« Accuracy: Without teacher - 71.0%; With teacher - 77.0%
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Results

« Two stream accuracy Vs state-of-the-art:

Method ¥ GFLOPs UCF-101 HMDB-51
inc. optical flow
Two-Stream [70] 150 88.0 59.4
3D Conv Fusion [71] 153 92.5 65.4
Action-VLAD [72] - 92.7 66.9
ST-ResNet [153] - 93.4 66.4
Two-Stream 13D [84] 648 97.8 80.9
no optical flow
EMV-CNN [81] 150 86.4 -
CoViAR[82] 110 90.4 59.1
C3D [66] 385 82.3 51.6
Res3D [154] 193 85.8 54.9
I3D (RGB only)[84] 324 95.1 74.3
LTC (RGB only) [155] 308 82.4 -
Proposed, NVS (emulated)-RGB CNN 84 89.0 62.0

* Note: To minimize the APS bottleneck we infer on a single

shot of 8 RGB frames at maximum motion activity "



Results

* We present an efficient multimodal framework for NVS-
based action recognition

* Training with optical flow supervision improves accuracy
by 6% on a single shot of 8 frames

* We achieve 89.8% on UCF-101 with less than 100
theoretical GFLOPs for CNN processing

« However, accuracy is reported on emulated NVS events;
we want performance to generalize better to real NVS
events
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Further Work: Graph-based Object Classification

 An NVS frame and its pixel value:
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« Compact graph representation:
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Further Work: Graph-based Object Classification
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Further Work: Graph-based Object Classification

« Top-1 accuracy of our CNNs w.r.t. the state of the art &
other graph convolution networks on object classification:

Model N-MNIST MNIST-DVS N-Caltech101 CIFAR10-DVS N-CARS ASL-DVS
H-First [40] 0.712 0.595 0.054 0.077 0.561 -
HOTS [29] 0.808 0.803 0.210 0.271 0.624

Gabor-SNN [30, 42] 0.837 0.824 0.196 0.245 0.789

HATS [56] 0.991 0.984 0.642 0.524 0.902 -
GIN [62] 0.754 0.719 0.476 0.423 0.846 0.514
ChebConv [17] 0.949 0.935 0.524 0.452 0.855 0.317
GCN [27] 0.781 0.737 0.530 0.418 0.827 0.811
MoNet [ 7] 0.965 0.976 0.571 0.476 0.854 0.867
G-CNNGs (this work) 0.985 0.974 0.630 0.515 0.902 0.875
RG-CNNs (this work) 0.990 0.986 0.657 0.540 0.925 0.901
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