
Privacy-preserving Neural Networks (NNs)

▪ All operations in the NN are replaced by their HE counterparts [1].

▪ Non-linear Activation layers are replaced by polynomial approximations [2].

▪ Batch Normalization layer is introduced before each Activation, to ensure inputs fall

within the convergence interval of the approximation [3].

Advantages

▪ Encrypted predictions can be computed over encrypted vectors of features.

▪ Batching can be used to perform several predictions at the same time.

▪ Provides a secure framework for both the user and the detainer of the model.

Disadvantages

▪ Predictions take much longer than in an unencrypted context (s vs μs).

▪ Network architecture is limited by noise growth, scaling and computational complexity.

▪ Polynomial approximations may result in less accurate models.

▪ Batching requires discretized weights and inputs, that may lead to accuracy degradation.

Proposed Solution

▪ Weight discretization through layer pre-computation and scaling.

▪ Input feature quantization.

Neural Network Discretization:

μ-Law Quantization:

Experimental Setup

Datasets (Training and Development Corpus only)

▪ Cold Corpus: URTIC – Classification.

▪ Depression Corpus: DAIC-WOZ – Classification and Regression.

▪ Parkinson’s Disease Corpus : Spanish Corpus of UdeA – Regression.

Features:

▪ Depression and Cold: eGeMAPS features.

▪ Parkinson’s Disease: Specialized feature set for PD, 36 GeMAPS based features plus

78 MFCC based features.

Encryption Parameters

▪ Polynomial Modulus: 16,384.

▪ Plaintext Modulus: Value larger than 259.

▪ Coefficient Modulus selected for a security level of 128 bits.

Results (4-bit Quantization, Scaling factor s = 150)

▪ 16,384 simultaneous predictions take around 23 seconds, using SEAL.

▪ The effective cost for a single prediction is around 1.4 milliseconds.

- NN – Baseline Neural Network with polynomial activation functions.

- QNN – Neural Network with polynomial activation function and quantized inputs.

- Scaled QNN – Equal to the QNN but with scaled weights.

Conclusions and Future Work

▪ This work showed that discretizing an NN and quantizing its inputs can be done

with minimal accuracy degradation.

▪ Nonetheless, the proposed framework limits the size and architecture of NNs.

▪ As future work it would be interesting to explore other feature quantization

functions.

▪ Additionally, end-to-end frameworks will also be explored, as these would

remove the computational toll due to feature extraction from the client’s side.
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Privacy-preserving Paralinguistic Tasks
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Polynomial ReLU:

Abstract
Speech is one of the primary means of communication for humans. It can be viewed as a carrier

for information on several levels as it conveys not only the meaning and intention predetermined

by a speaker, but also paralinguistic and extralinguistic information about the speaker’s age,

gender, personality, emotional state, health state and affect. This makes it a particularly sensitive

biometric, that should be protected. In this work we intent to explore how Leveled Homomorphic

Encryption can be combined with a Neural Network to create a privacy-preserving machine

learning framework for speech based health-related tasks. In particular, we will apply this

framework to the detection and assessment of a Cold, Depression and Parkinson’s Disease.

Moreover, we will show how using a Quantized Neural Network, with discretized weights, allows

us to apply a Leveled Homomorphic Encryption technique called batching that can be utilized to

reduce the effective computational cost of this framework.

Motivation
▪ Speech contains a large amount of information about a person.

▪ Some of this information may be sensitive and not appropriate to be disclosed.

▪ Health related information taken from speech is especially sensitive, and should

be protected.

▪ In speech it is common to have several samples for the same speaker.

▪ The use of batching is thus especially suited for speech-based applications.

Homomorphic Encryption
Concept

Mathematical operations can be computed on encrypted values (ciphertexts),

yielding encrypted results:

𝐸𝑛𝑐(𝑎)+𝐸𝑛𝑐(𝑏)=𝐸𝑛𝑐(𝑎+𝑏)

𝐸𝑛𝑐(𝑎)×𝐸𝑛𝑐(𝑏)=𝐸𝑛𝑐(𝑎×𝑏)

Limitations

▪ Operations are limited to multiplications and additions (in most schemes).

▪ Performing homomorphic operations increases the amount of noise in a

ciphertext, which can result in incorrect decryptions.

▪ The maximum amount of operations is determined by the encryption

parameters.

▪ Changing the encryption parameters to perform more operations results in

heavier computations.

Batching

▪ Levelled Homomorphic Encryption technique that allows several messages to

be encrypted within the same ciphertext.

▪ Messages can be operated on as SIMD.

▪ Batching is incompatible with fractional encoding schemes.

▪ Encrypted values must be smaller than the plaintext modulus, to ensure correct

decryptions.

Method F1 Score Precision Recall

NN 56.1 63.2 54.9

QNN 53.0 56.7 66.8

Scaled QNN 50.2 56.5 66.9

Method F1 Score Precision Recall

NN 55.4 59.9 59.6

QNN 60.3 60.2 60.6

Scaled QNN 59.8 60.0 60.5

Table III – Results for Cold

Tables I,II – Results for Depression 

(Classification and Regression)

Method RMSE MAE

NN 6.69 5.59

QNN 6.74 5.62

Scaled QNN 6.67 5.63

Method RMSE MAE ρ

NN 16.1 12.7 .43

QNN 15.9 12.6 .53

Scaled QNN 15.8 12.6 .52

Table IV – Results for PD
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