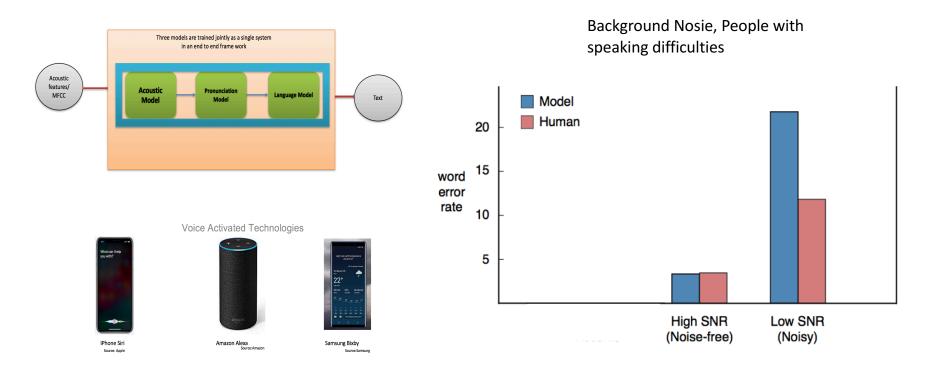


Speech Recognition with no Speech or with Noisy Speech

Gautam Krishna Co Tran Jianguo Yu Ahmed Tewfik

The University of Texas at Austin University of Aizu ICASSP 2019



Outline:

- \succ Introduction
- Model
- Results \succ

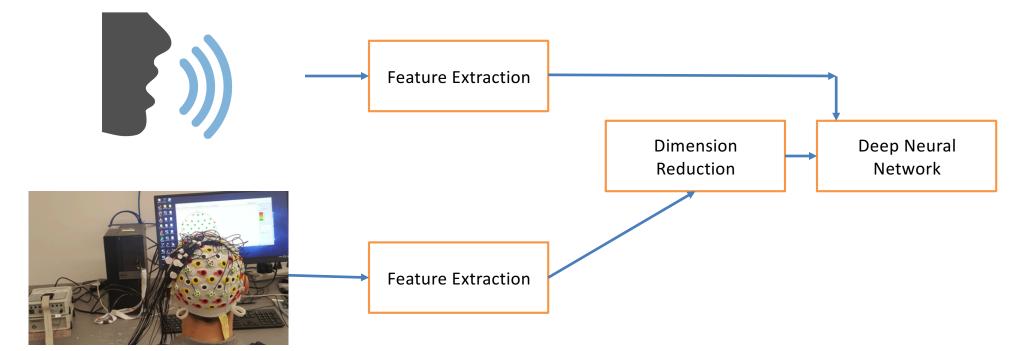
Challenges for Robust ASR

Source: Awni Hannun, Stanford, Speech Recognition is not solved Blog, Baidu Al Lab

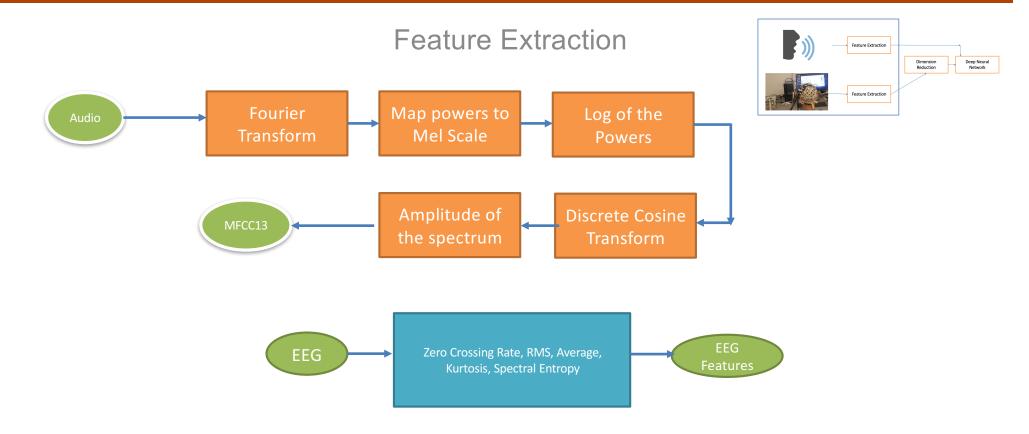
Can EEG be used to improve Speech Recognition Performance?

Insight into using EEG

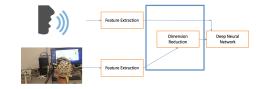
Source: medicalxpress.com

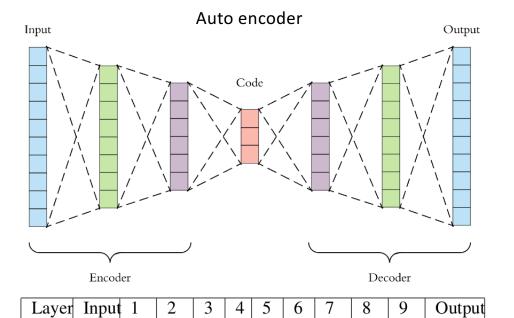


Unique property of human auditory cortex to reject environmental artifacts EEG + Acoustic features to improve robustness of ASR


Improving Technology Accessibility for people with speaking disability, difficulties

OVERVIEW




155

Units

200 100 40

Dimension Reduction

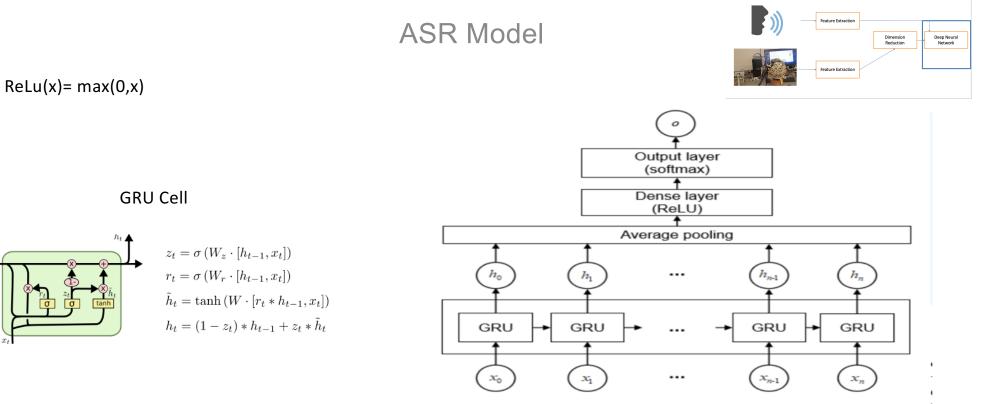
13 6

13

40

100

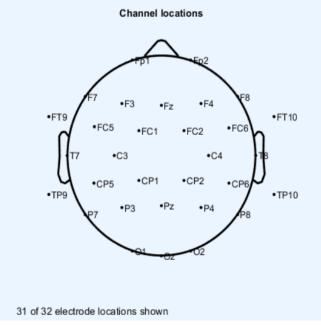
200 155


Kernel PCA	
------------	--

$$k(x_m, x_n) = (x_m \cdot x_n)^d$$

 h_{t-}

The University of Texas at Austin Electrical and Computer Engineering Cockrell School of Engineering

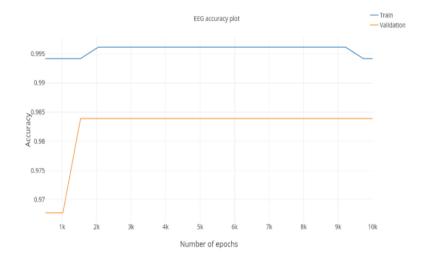

ASR Model

> Predicting isolated five English vowels and four English words using only EEG features, EEG + Acoustic features

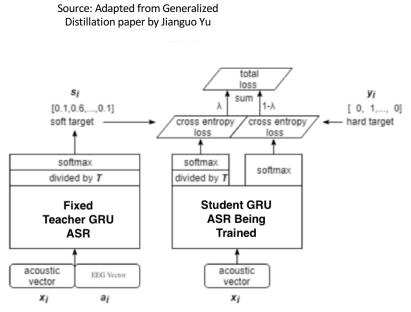
- Four male subjects
- > Three were native English speakers and one non native speaker
- English vowels and four English words
- Background noise of 60 dB
- Data collected from the same subject on different days
- Brain vision EEG hardware
- Simultaneous Speech and EEG signals were recorded

EEG Sensor locations

Words/Vow	elClass	Training	Validation	Test	Total
		set	set	set	
	Ratio	64	16	20	100
Words	yes	195	49	61	305
Words	no	259	66	81	406
Words	right	219	56	68	343
Words	left	214	54	67	335
Vowel	a	170	44	53	267
Vowel	e	170	44	53	267
Vowel	i	170	44	53	267
Vowel	0	170	44	53	267
Vowel	u	170	44	53	267


Data Set used

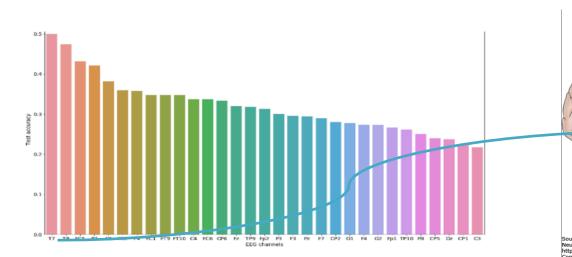
Results


Words/Vowels	Background	MFCC	MFCC-	EEG
	noise	acc	EEG	acc
			acc	
Vowels	No	89.09	96.36	90.91
Vowels	Yes	74.74	94.74	92.63
Words	No	95.63	97.91	96.87
Words	Yes	93.00	97.50	99.38

ASR EEG fusion Test time results for words, vowels data set

ASR performance for recognition of words in presence of background noise using only EEG

Teacher : mfcc + EEG Student : soft targets + mfcc Explains interpretability of the model and shows another way of integrating EEG features with acoustic features for ASR


Words/Vowels	Background	Student	MFCC
	noise	acc	acc
Vowels	No	92.73	89.09
Vowels	Yes	76.84	74.74
Words	No	98.61	95.83
Words	Yes	97.62	93.00

Test time results after distillation training

Results

The University of Texas at Austin Electrical and Computer Engineering Cockrell School of Engineering

Results

Insular cortex Primary auditory cortex (Heschl's gyri) Secondary auditory cortex Higher-order auditory cortex Higher-order auditory cortex Higher-order auditory cortex

ASR Test accuracy contribution per each EEG sensor. Sensors T7 and T8 showed highest contribution. T7 and T8 are located near temporal lobe (auditory cortex)

Extending the results for continuous speech for English Corpus

Number of Sentences	Number of unique words contained	EEG (CER %)	EEG+ MFCC (CER %)
3	19	2.2	0
5	29	1	0
7	42	1.8	0
10	59	11.6	9.6

Character error rate on Test set using CTC model for 65 dB noise data

Number of Sentences	Number of unique words contained	EEG (CER %)
3	19	0.8
5	29	11.6
7	42	18
10	59	22.01

Character error rate on Test set using CTC model for 65 dB noise data by using EEG features from only T7 and T8 electrodes

> Submitted to EUSIPCO 2019

CONCLUSION

- EEG can help ASR systems to overcome performance loss due to background noise
- Demonstrated the feasibility of using only EEG signals for Speech Recognition

FUTURE WORK

- Collect clinical data from people with speaking disabilities, disorders
- Develop physics models to give better interpretability
- Build a larger Speech EEG data base and demonstrate results for a much larger English corpus

Thanks!