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1. Problem Statement
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How to Assess a Demented Person’s Cognitive State

e Alzheimer's dementia is a neurodegenerative disease
Mini-mental state exam (MMSE)

® executed by a physician

e 30 questions to assess mental capabilities:

o score < 19: severe dementia
o score > 29: median of healthy people
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How to Assess a Demented Person’s Cognitive State

e Alzheimer's dementia is a neurodegenerative disease
Mini-mental state exam (MMSE)

® executed by a physician

e 30 questions to assess mental capabilities:

o score < 19: severe dementia
o score > 29: median of healthy people

Automatic analysis of spontaneous speech

e Cookie Theft picture description
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Alzheimer’s Classification based on Language Structures

Cookie Theft picture description

® natural approximation to
spontaneous discourse
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Alzheimer’s Classification based on Language Structures

Cookie Theft picture description

® natural approximation to
spontaneous discourse

Alzheimer's patient:

® « There's a young boy getting a cookie jar.
And it he's uh in a bad shape because uh the thing is falling over. »

Healthy control:

® « A boy is trying to get cookies out of a jar
and he's about to tip over on a stool. »
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2. Language Modeling based Alzheimer's Classification
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Language Modeling based Alzheimer’s Classification

Language modeling

® assigning probabilities P(w) to words given previous words

« the high ... tree/tower/mountain »
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Language Modeling based Alzheimer’s Classification

Language modeling

® assigning probabilities P(w) to words given previous words

« the high ... tree/tower/mountain »

Language model evaluation: perplexity (PPL)

1

e PPL(S)=P(S)"~ , P(S) := probability of sequence S, N := # words in S
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Language Modeling based Alzheimer’s Classification

Language modeling
® assigning probabilities P(w) to words given previous words

« the high ... tree/tower/mountain »

Language model evaluation: perplexity (PPL)
e PPL(S)= P(S)_% , P(S) := probability of sequence S, N := # words in S

Perplexity-based Alzheimer’s classification using n-grams !
e perplexity difference used for binary Alzheimer’s classification
® n-grams have a fixed context length

'S. Wankerl, E. N6th, and S. Evert, "An n-gram based approach to the automatic diagnosis of
alzheimer’s disease from spoken language," in Proc. Interspeech, 2017.
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3. Experimental Methodology
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Experimental Methodology

Address shortcomings of n-grams: RWTHLM toolkit
® building and evaluating neural network language models (NNLMs)
e designed for using recurrent and long short-term memory (LSTM) layers
— allowing variable context length
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Experimental Methodology

Address shortcomings of n-grams: RWTHLM toolkit
® building and evaluating neural network language models (NNLMs)
e designed for using recurrent and long short-term memory (LSTM) layers
— allowing variable context length

Experimental setup
® | Ms from Alzheimer's M ajzneimer's and control transcriptions M contror
® |eave-one-speaker-out cross-validation
e excluding 10 randomly selected speakers for validation
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Experimental Methodology

Address shortcomings of n-grams: RWTHLM toolkit
® building and evaluating neural network language models (NNLMs)
e designed for using recurrent and long short-term memory (LSTM) layers
— allowing variable context length

Experimental setup
® | Ms from Alzheimer's M ajzneimer's and control transcriptions M contror
® |eave-one-speaker-out cross-validation
e excluding 10 randomly selected speakers for validation

Evaluation
e perplexity evaluation of each speaker s on 2 LMs giving pplown and pplother

PPlown — PPlother if s € Alzheimer’s group
pplaifr = .
PPlother — PPlown if S € control group
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Perplexity Difference for Binary Classification

Comparison of perplexity means from both groups

®  DPlotner
u Pplown
A pplan
30 4
A
2
25
g
§
> 03
z 2
3 20 . 8
5 z
e 3
2%
&
15 -
. 4
A -
10 6
Alzheimer Control

e classification threshold at equal-error rate (EER)
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Data — DementiaBank’s Pitt Corpus

English Cookie Theft picture descriptions & MMSE scores
e conducted yearly
e publicly available

Selection for Alzheimer's classification:
® 168 Alzheimer's patients, 255 transliterations

® 08 control patients, 244 transliterations
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4. Results & Analysis
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Performance Evaluation with ROC Curves (1)

Overall accuracy: 85.6% at EER, 72 wrongly classified transliterations
(compared to 77.1% at EER with tri-grams)

True positive rate

® Accuracy at EER MMSE 0-30
—— ROC Curve MMSE 0-30, AUC=0.92
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Performance Evaluation with ROC Curves (2)

Overall accuracy: 85.6% at EER, 72 wrongly classified transliterations
(compared to 77.1% at EER with tri-grams)

Speakers with an MMSE score from 21 to 30: 79.9% at EER,
66 wrongly classified transliterations
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Performance Evaluation with ROC Curves (3)
All speakers: 85% true positive rate (TPR), 10% false positive rate (FPR)

Speakers with an MMSE score from 21 to 30: 85% TPR, 33% FPR

True positive rate
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Performance Evaluation with ROC Curves (4)
All speakers: 85% true positive rate (TPR), 10% false positive rate (FPR)

Speakers with an MMSE score from 21 to 30: 73% TPR, 10% FPR

True positive rate
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Classification Results per MMSE (1)

Histogram of all Alzheimer's MMSE scores
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Classification Results per MMSE (2)

Histogram of all Alzheimer's and control MMSE scores
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Classification Results per MMSE (3)

Histogram of all Alzheimer's and control MMSE scores and accuracy per MMSE
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Using Perplexity Difference for MMSE Estimation

Pearson’s correlation r and Spearman’s correlation p between MMSE scores and
perplexity difference pgisr:

r o
Alzheimer's | 0.433 0.547
Control 0.112 0.109
All 0.656 0.771
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Conclusions

Neural network-based language models used for Alzheimer's classification
® model language structures well (85.6% vs 77.1% with tri-grams)
e perplexity difference correlates well with MMSE scores
® s a purely statistical approach transferable to other languages
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Conclusions

Neural network-based language models used for Alzheimer's classification
® model language structures well (85.6% vs 77.1% with tri-grams)
e perplexity difference correlates well with MMSE scores
® s a purely statistical approach transferable to other languages
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ROC Curve Comparison to N-grams
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ROC Curve Comparison to N-grams
LSTM-NNMLs: 85.6% at EER, 72 wrongly classified transliterations
Tri-gram LMs: 77.1% at EER, 114 wrongly classified transliterations
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