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How to Assess a Demented Person’s Cognitive State

• Alzheimer’s dementia is a neurodegenerative disease

Mini-mental state exam (MMSE)
• executed by a physician
• 30 questions to assess mental capabilities:

◦ score < 19: severe dementia
◦ score > 29: median of healthy people

Automatic analysis of spontaneous speech
• Cookie Theft picture description
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Alzheimer’s Classification based on Language Structures

Cookie Theft picture description
• natural approximation to

spontaneous discourse

Alzheimer’s patient:
• « There’s a young boy getting a cookie jar.

And it he’s uh in a bad shape because uh the thing is falling over. »

Healthy control:
• « A boy is trying to get cookies out of a jar

and he’s about to tip over on a stool. »
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Language Modeling based Alzheimer’s Classification

Language modeling
• assigning probabilities P(w) to words given previous words

« the high ... tree/tower/mountain »

Language model evaluation: perplexity (PPL)

• PPL(S) = P(S)−
1
N , P(S) := probability of sequence S , N := # words in S

Perplexity-based Alzheimer’s classification using n-grams
• perplexity difference used for binary Alzheimer’s classification
• n-grams have a fixed context length
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• perplexity difference used for binary Alzheimer’s classification
• n-grams have a fixed context length

1S. Wankerl, E. Nöth, and S. Evert, "An n-gram based approach to the automatic diagnosis of
alzheimer’s disease from spoken language," in Proc. Interspeech, 2017.
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Experimental Methodology
Address shortcomings of n-grams: RWTHLM toolkit
• building and evaluating neural network language models (NNLMs)
• designed for using recurrent and long short-term memory (LSTM) layers
→ allowing variable context length

Experimental setup
• LMs from Alzheimer’sMAlzheimer ′s and control transcriptionsMcontrol
• leave-one-speaker-out cross-validation
• excluding 10 randomly selected speakers for validation

Evaluation
• perplexity evaluation of each speaker s on 2 LMs giving pplown and pplother

ppldiff =

{
pplown − pplother if s ∈ Alzheimer’s group
pplother − pplown if s ∈ control group
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Perplexity Difference for Binary Classification

Comparison of perplexity means from both groups
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• classification threshold at equal-error rate (EER)
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Data – DementiaBank’s Pitt Corpus

English Cookie Theft picture descriptions & MMSE scores
• conducted yearly
• publicly available

Selection for Alzheimer’s classification:
• 168 Alzheimer’s patients, 255 transliterations
• 98 control patients, 244 transliterations
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Performance Evaluation with ROC Curves (1)
Overall accuracy: 85.6% at EER, 72 wrongly classified transliterations
(compared to 77.1% at EER with tri-grams)
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Performance Evaluation with ROC Curves (2)
Overall accuracy: 85.6% at EER, 72 wrongly classified transliterations
(compared to 77.1% at EER with tri-grams)

Speakers with an MMSE score from 21 to 30: 79.9% at EER,
66 wrongly classified transliterations
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Performance Evaluation with ROC Curves (3)
All speakers: 85% true positive rate (TPR), 10% false positive rate (FPR)

Speakers with an MMSE score from 21 to 30: 85% TPR, 33% FPR
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Performance Evaluation with ROC Curves (4)
All speakers: 85% true positive rate (TPR), 10% false positive rate (FPR)

Speakers with an MMSE score from 21 to 30: 73% TPR, 10% FPR
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Classification Results per MMSE (1)

Histogram of all Alzheimer’s MMSE scores
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Classification Results per MMSE (2)

Histogram of all Alzheimer’s and control MMSE scores
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Classification Results per MMSE (3)

Histogram of all Alzheimer’s and control MMSE scores and accuracy per MMSE
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Using Perplexity Difference for MMSE Estimation

Pearson’s correlation r and Spearman’s correlation ρ between MMSE scores and
perplexity difference pdiff :

r ρ

Alzheimer’s 0.433 0.547
Control 0.112 0.109
All 0.656 0.771
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Conclusions

Neural network-based language models used for Alzheimer’s classification
• model language structures well (85.6% vs 77.1% with tri-grams)
• perplexity difference correlates well with MMSE scores
• is a purely statistical approach transferable to other languages
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ROC Curve Comparison to N-grams
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ROC Curve Comparison to N-grams
LSTM-NNMLs: 85.6% at EER, 72 wrongly classified transliterations

Tri-gram LMs: 77.1% at EER, 114 wrongly classified transliterations
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