

FFTTA

Low-Power Programmable Processor for Fast Fourier Transform Based on Transport Triggered Architecture

May 10, 2019

Jakub Žádník & Jarmo Takala {jakub.zadnik, jarmo.takala}@tuni.fi Tampere University, Tampere, FINLAND

The Goal

Design a FFT processor that is:

- Programmable
- Low-enough-power to be comparable with ASIC

Improving previous work¹ by decreasing instruction memory power consumption.

¹T. Pitkänen. (2014). *Fast Fourier Transforms on Energy-Efficient Application-Specific Processors.* PhD thesis, Tampere University of Technology.

Low-Power Programmable Processor for **Fast Fourier Transform** Based on Transport Triggered Architecture

Fourier Transform (DFT vs. FFT)

Discrete Fourier Transform (DFT):

$$X(k) = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j2\pi k n/N} = \frac{1}{N} \sum_{n=0}^{N-1} x(n) \underbrace{W_N^k}_{N}^{n}$$

.

Fast Fourier Transform (FFT):

$$N = 2^q, q = 1, 2, 3...$$

Fourier Transform (twiddle factors)

Figure: Twiddle factors of FFT sizes 8,16 and 64. Only N/8 + 1 twiddle factors need to be stored (B0)

Fourier Transform (butterflies)

- Possible to break down large FFT to small elementary FFTs
- Radix-4 \Rightarrow support for FFT sizes 4^k only
- Radix-2 \Rightarrow support for FFT sizes 2^k

Figure: Radix-4 and radix-2 butterflies - the base computation units

Radix-2:

$$\begin{aligned} y_0' &= x_0 + W_N^{k_2} x_2 \; ; \; y_2' = x_1 + W_N^{k_1} x_3 \\ y_1' &= x_0 - W_N^{k_2} x_2 \; ; \; y_3' = x_1 - W_N^{k_3} x_3 \end{aligned}$$

Radix-4:

$$y_0 = x_0 + W_N^{k_1} x_1 + W_N^{k_2} x_2 + W_N^{k_3} x_3$$

$$y_1 = x_0 - j W_N^{k_1} x_1 - W_N^{k_2} x_2 + j W_N^{k_3} x_3$$

$$y_2 = x_0 - W_N^{k_1} x_1 + W_N^{k_2} x_2 - W_N^{k_3} x_3$$

$$y_3 = x_0 + j W_N^{k_1} x_1 - W_N^{k_2} x_2 - j W_N^{k_3} x_3$$

Figure: Starting with an input array of complex numbers in a memory

Example run: in-place computation (N=16)

Figure: Reorder output (not part of the processor)

Low-Power **Programmable** Processor for Fast Fourier Transform Based on **Transport Triggered Architecture**

Transport Triggered Architecture (TTA)

- Parallel architecture
- Only 1 instruction move

Figure: Example TTA architecture; GCU - general control unit; FU - functional unit; RF - register file; LSU - load-store unit

Transport Triggered Architecture (TTA)

Transport Triggered Architecture (TTA)

The Processor Architecture

Figure: ADD - adder; TFG - twiddle factor generator; LUT - lookup table; AG - address generator; DLY - rotating register (delay); SH shifter; CMUL - complex multiplier; CADD - complex adder (butterfly)

Instruction schedule

Figure: Bus reservation table of one radix-4 butterfly

Instruction schedule

Figure: Bus reservation table of full 16-point FFT (not incl. setup code - 6 instr.)

Low-Power Programmable Processor for Fast Fourier Transform Based on Transport Triggered Architecture

Introducing Loop Buffer

- One repeated instruction word in kernel => unnecessary instruction memory fetches
- Memory fetching consumes power

Introducing Loop Buffer

- Kernel is compressed into one instruction word
- The instruction word is saved in a loop buffer (small memory cache) and repeatedly executed from there

Results

Instruction memory power consumption is negligible (<1% of total)

			→ 28nm/0.60V → 28nm/0.80V → 28nm/0.85V → 28nm/0.90V → 28nm/0.95V → 28nm/1.10V → 65nm/1.00V	
#	contributor	%		
1	data memory	43	70	
2	complex multiplier	22	60	
3	twiddle factor generator	16	50	
4	complex adder	5.1		
5	interconnect	4.1	j	
6	rotating register	2.9	§ 30	
7	address generator	1.9	20	
8	loop buffer	1.4	10	
9	\sum of <1% contributors	3.6		
Tabl	e. Power consumption		- 00 00 00 00 00 00 00 00 00 Frequency (MHz)	

Table: Power consumption contributors (1024-point FFT, 28nm, 0.6V, 450MHz)

Figure: Synthesis results (power consumption)

Results - comparison

Power (mW)	
28nm	4.2
[5]	8.9
65nm	12.2
[4]	17.6
[7]	29.0

[4] M. Garrido, R. Andersson, F. Qureshi, and O. Gustafsson, "Multiplierless unity-gain SDF FFTs," *IEEE T. Very LargeScale Integration Syst.*, vol. 24, no. 9, pp. 3003–3007, 2016.

[5] M. Garrido, S. Huang, and S. Chen, "Feedforward FFT hardware architectures based on rotator allocation," *IEEE T. Circ.Syst. I: Regular Papers*, vol. 65, no. 2, pp. 581–592, 2018.

[7] S. Huang and S. Chen, "A high-parallelism memory-based FFT processor with high SQNR and novel addressing scheme," in *Proc. IEEE ISCAS*, 2016, pp. 2671–2674.

Credits

TTA-based Co-design Environment (TCE)

- ► GUI+CLI toolset² for designing TTA processors
 - Architecture designer (GUI)
 - HDL generator (generates the full processor RTL)
 - Batteries included (tutorial, HDL for basic FUs)
 - C & assembly compilers
 - Simulator (visualizing data moves)
 - and more...
- Started as a MOVE project by Henk Corporaal³ (1990s)
- Continued by a CPC group (openasip.org) led by Jarmo Takala⁴ and now Pekka Jääskeläinen⁴ (early 2000s – now)

²P. Jääskeläinen, T. Viitanen, J. Takala, and H. Berg, "HW/SW co-design toolset for customization of exposed datapath processors," in *Computing Platforms for Software-Defined Radio*, pp. 147–164. Springer, 2017

³Eindhoven University of Technology

⁴Tampere University

Thank you!