

UNMIXING DYNAMIC PET IMAGES: COMBINING SPATIAL HETEROGENEITY AND NON-GAUSSIAN NOISE

Yanna Cruz Cavalcanti⁽¹⁾, Thomas Oberlin⁽¹⁾, Nicolas Dobigeon⁽¹⁾, Cédric Févotte⁽¹⁾, Simon Stute⁽²⁾ and Clovis Tauber⁽³⁾ ⁽¹⁾ IRIT/INP-ENSEEIHT - Université de Toulouse, 31000 Toulouse, France ⁽²⁾ CEA SHJF, UMR 1023 IMIV, 91400 Orsay, France

⁽³⁾ UMRS INSERM U930 - Université de Tours, 37032 Tours, France

firstname.lastname@enseeiht.fr, simon.sture@cea.fr, clovis.tauber@univ-tours.fr

1 - INTRODUCTION

Dynamic positron emission tomography (PET)

- non-invasive nuclear imaging technique;
- time-activity curves (TACs): variation of the radiotracer concentration over time.

Noise distribution in PET images

3 - The β -divergence

Divergence measure

$$\mathcal{D}_{\beta}(\mathbf{Y}|\mathbf{X}) = \sum_{\ell=1}^{L} \sum_{n=1}^{N} d_{\beta}(y_{\ell,n}|x_{\ell,n}), \qquad (3)$$

with

$$d_{\beta}(y|x) = \frac{1}{\beta(\beta - 1)} (y^{\beta} + (\beta - 1)x^{\beta} - \beta y x^{\beta - 1}).$$
 (4)

Limit cases

$$d_{\beta}(y|x) = \begin{cases} \frac{1}{2}(y^2 + x^2 - 2yx) & \beta = 2, \\ y \log \frac{y}{x} - y + x & \beta = 1, \\ \frac{y}{x} - \log \frac{y}{x} - 1 & \beta = 0. \end{cases}$$
(5)

5 - RESULTS

Data generation:

- Dynamic PET phantom with $128 \times 128 \times 64$ voxels and L = 20 time-frames;
- Two phantoms:
 - Phantom I TACs derived from a clinical PET image using the ¹¹C-PE2I radioligand;
 - Phantom II derived from Phantom I but applying a variability to the high-uptake tissue.
- Generation process: analytical simulations with re-

- acquisition conditions, postprocessing corrections and reconstruction settings alter the initial Poisson distribution of the count rates;
- literature has assumed the noise to be Gaussian, Poisson, Gamma or even hybrid (Poisson-Gaussian, Poisson-Gamma).

- $\beta = 2$: Euclidian distance;
- $\beta = 1$: Kullback-Leibler divergence;
- $\beta = 0$: Itakura-Saito divergence.

Tweedie distributions

$$-\log p(y|x) = \varphi^{-1}d_\beta(y|x) + \text{const.}$$

- p(y | x): probability density function;

alistic count-rate properties: reconstruction based on ordered-subset expectation-maximization algorithm (with 3 and 30 iterations).

Parameters choice: stopping criterion $\varepsilon = 10^{-4}$.

Table 2: Variability penalization parameters.

	λ			
	$\beta = 0$	β =1	β=2	
3it	2.10^{-4}	1.10^{-3}	1.10^{-3}	
30it	1.10^{-4}	1.10^{-3}	1.10^{-3}	

(6)

2 - FACTOR ANALYSIS MODELS

General model formulation

 $\mathbf{Y} \approx \mathbf{X}(\underline{\theta}), \qquad (1)$ $- \mathbf{Y} = [\mathbf{y}_{1}, \dots, \mathbf{y}_{N}]: L \times N \text{ matrix of the } N \text{ measured TACs;}$ $- \mathbf{X}(\underline{\theta}): \text{ approximation model;}$ $- \underline{\theta} = \{\theta_{1}, \cdots, \theta_{P}\}: P \text{ physically interpretable variables.}$ **Optimization problem** $\hat{\underline{\theta}} \in \operatorname*{arg\,min}_{\theta \in \mathcal{C}} \Big\{ \mathcal{D}(\mathbf{Y} | \mathbf{X}(\underline{\theta})) + \boldsymbol{\lambda}^{\mathrm{T}} \mathbf{R}(\underline{\theta}) \Big\}, \qquad (2)$

- $\mathcal{D}(\cdot|\cdot)$: loss function;

- $\mathbf{R}(\underline{\theta}) = [r_1(\underline{\theta}), \dots, r_T(\underline{\theta})]^{\mathrm{T}}$: *T* penalizations; - $\boldsymbol{\lambda} = [\lambda_1, \dots, \lambda_T]^{\mathrm{T}}$: parameters weighting the penaliza-

- φ : dispersion parameter.
- in the special cases $\beta = 2, 1, 0$, the β -divergence is related to additive Gaussian, and multiplicative Poisson and Gamma observation noises.

4 - OPTIMIZATION ALGORITHM

Block-coordinate descent algorithm

- majorization-minimization algorithms;
- multiplicative updates;
- β -NMF algorithm is widely used in the literature and β -LMM is a depreciated version of β -SLMM.

β -SLMM unmixing				
Input: Y,A, M, B, λ				
1: Initialize:				
$ ilde{\mathbf{X}} \leftarrow \mathbf{M}\mathbf{A} + \left \mathbf{E}_1\mathbf{A}\cdot\mathbf{V}\mathbf{B} ight $				
2: while stopping criterion not satisfied do				
% Update variability matrix				
3: $\mathbf{B} \leftarrow \mathbf{B} \cdot \left[\frac{1_{N_v}^{\mathrm{T}} \mathbf{A}_{1,:} \cdot (\mathbf{V}^{\mathrm{T}} (\mathbf{Y} \cdot \tilde{\mathbf{X}}^{\beta-2}))}{1_{N_v}^{\mathrm{T}} \mathbf{A}_{1,:} \cdot (\mathbf{V}^{\mathrm{T}} \tilde{\mathbf{X}}^{\beta-1}) + \lambda \mathbf{B}^k \Gamma_{\mathbf{B}}} \right]^{\frac{1}{3-\beta}}$				
4: $\tilde{\mathbf{X}} \leftarrow \mathbf{M}\mathbf{A} + \begin{bmatrix} \mathbf{E}_1 \mathbf{A} \cdot \mathbf{V}\mathbf{B} \end{bmatrix}$				

Table 3: Mean NMSE of \mathbf{A}_1 , $\mathbf{A}_{2:K}$, $\mathbf{\tilde{M}}^1$, $\mathbf{M}^{2:K}$ and $\mathbf{A}_1 \cdot \mathbf{B}$ and PSNR of estimated image estimated by β -LMM and β -SLMM for different values of β .

		β -LMM			β -SLMM		
	β	0	1	2	0	1	2
3it	\mathbf{A}_1	0.31	0.29	0.30	0.30	0.30	0.31
	$\mathbf{A}_{2:K}$	0.52	0.51	0.51	0.53	0.53	0.52
	$ ilde{\mathbf{M}}^1$	0.10	0.19	0.27	0.01	0.01	0.01
	$\mathbf{M}^{2:K}$	0.39	0.37	0.31	0.38	0.37	0.32
	$\mathbf{A}_1 \cdot \mathbf{B}$	_	_	_	0.49	0.48	0.53
	PSNR	22.2	25.3	28.3	30.0	30.2	27.9
30it	\mathbf{A}_1	0.58	0.63	0.56	0.68	0.78	0.70
	$\mathbf{A}_{2:K}$	0.58	0.56	0.59	0.58	0.59	0.59
	$ ilde{\mathbf{M}}^1$	0.76	0.51	0.41	0.01	0.01	0.01
	$\mathbf{M}^{2:K}$	0.27	0.28	0.24	0.26	0.25	0.24
	$\mathbf{A}_1 \cdot \mathbf{B}$	_	_	-	0.87	0.72	0.80
	PSNR	20.4	25.5	26.1	25.8	27.4	27.0

tions;

-C: set of constraints.

Table 1: Summary of NMF, LMM and SLMM.
--

	$\underline{\theta}$	$\mathbf{X}(\underline{oldsymbol{ heta}})$	\mathcal{C}	$\mathbf{R}(\underline{\boldsymbol{ heta}})$
NIME		$\mathbf{X} - \mathbf{M} \mathbf{\Lambda}$	$\mathbf{A} \succeq 0_{K,N}$	
	1	$\Lambda = 1$ VIA	$\mathbf{M} \succeq 0_{L,K}$	_
			$\mathbf{A} \succeq 0_{K,N}$	
LMM	$\{\mathbf{M},\mathbf{A}\}$	$\mathbf{X} = \mathbf{M}\mathbf{A}$	$\mathbf{M} \succeq 0_{L,K}$	-
			$\mathbf{A}^{\mathrm{T}}1_{K}=1_{N}$	
		$\mathbf{X} - \mathbf{M} \mathbf{\Delta}$	$\mathbf{A} \succeq 0_{K,N}$	
SI MM		$+ \begin{bmatrix} \mathbf{E}_1 \mathbf{A} \cdot \mathbf{V} \mathbf{B} \end{bmatrix}$	$\mathbf{M} \succeq 0_{L,K}$	$\ \mathbf{B}\ _{0,1}$
			$\mathbf{B} \succeq 0_{{N_v},N}$	••• 2,1
			$\mathbf{A}^{\mathrm{T}} 1_{K} = 1_{N}$	

– M: $L \times K$ matrix of factors;

- **A**: $K \times N$ matrix of factor proportions;
- E_1 : matrix $[1_{L,1}0_{L,K-1}]$;
- **V**: dictionary describing the variability;
- **B**: matrix of variability coefficients in each voxel.

% Update factor TACs 5: $\mathbf{M}_{2:K} \leftarrow \mathbf{M}_{2:K} \cdot \left[\frac{(\mathbf{Y} \cdot \tilde{\mathbf{X}}^{\beta-2}) \mathbf{A}_{2:K}^T}{\tilde{\mathbf{X}}^{\beta-1} \mathbf{A}_{2:K}^T} \right]$ 6: $\tilde{\mathbf{X}} \leftarrow \mathbf{M}\mathbf{A} + \left[\mathbf{E}_{1}\mathbf{A} \cdot \mathbf{V}\mathbf{B}\right]$ % Update SBF factor proportion 7: $\mathbf{A}_1 \leftarrow \mathbf{A}_1 \cdot \left| \frac{\mathbf{1}_L^{\mathrm{T}}((\mathbf{M}_1\mathbf{1}_N^{\mathrm{T}} + \mathbf{V}\mathbf{B}) \cdot (\mathbf{Y} \cdot \tilde{\mathbf{X}}^{\beta-2}) + \tilde{\mathbf{x}}^{\beta})}{\mathbf{1}_L^{\mathrm{T}}((\mathbf{M}_1\mathbf{1}_N^{\mathrm{T}} + \mathbf{V}\mathbf{B}) \cdot \tilde{\mathbf{X}}^{\beta-1} + \mathbf{Y} \cdot \tilde{\mathbf{X}}^{\beta-1})} \right|$ % Update other factor proportions 8: $\mathbf{A}_{2:K} \leftarrow \mathbf{A}_{2:K} \cdot \left| \frac{\mathbf{M}_{2:K}^T (\mathbf{Y} \cdot \tilde{\mathbf{X}}^{\beta-2}) + \mathbf{1}_{K-1,L} \tilde{\mathbf{X}}^{\beta}}{\mathbf{M}_{2:K}^T \tilde{\mathbf{X}}^{\beta-1} + \mathbf{1}_{K-1,L} (\mathbf{Y} \cdot \tilde{\mathbf{X}}^{\beta-1})} \right|$ 9: $\tilde{\mathbf{X}} \leftarrow \mathbf{M}\mathbf{A} + \left|\mathbf{E}_{1}\mathbf{A} \cdot \mathbf{V}\mathbf{B}\right|$ 10: end while Output: A, M, B

- $\mathbf{1}_{K,L}$: $K \times L$ -matrix of ones;

 $- \Gamma_{\mathbf{B}} \triangleq \operatorname{diag}[\|\mathbf{b}_1\|_1, \cdots, \|\mathbf{b}_1\|_N]^{-1}.$

6 - CONCLUSION

Main contributions

- Introduction of the β-divergence for the factor analysis of dynamic PET images;
- Derivation of a new algorithm for the SLMM model, using the β -divergence.

Future work

- Validate the approach on real data;
- Propose an optimal value of β for different reconstruction iterations in this setting;
- Apply the β-divergence into different steps of the PET imaging pipeline, such as denoising and reconstruction.