

- operation and invariant to the angle-of-view changes.
- challenge to these recognition methods.
- structure.
- feature representation.
- - both local and global characteristics of the shape.
 - graph for 3D shape representation.

- pixels for each shape.
- Fig. 1

We also define the signal $r: \mathcal{V} \rightarrow R$, where i^{th} component represents the Euclidean distance from the centre $(0,0,0)$ to the vertex i in \mathcal{V} .	r _i
The degree matrix $D_{i,j}$ is calculated as shown.	
The graph Laplacian matrix is then calculated, as follows:	

ADAPTIVE GRAPH FORMULATION FOR 3D SHAPE RECOGNITION

Basheer Alwaely and Charith Abhayarathe

Department of Electronic and Electrical Engineering, The University of Sheffield, United Kingdom. Email: b.alwaely@sheffield.ac.uk, c.abhayaratne@sheffield.ac.uk, Web: http://svc.group.shef.ac.uk

The proposed method was tested on a variety of shapes using artificial 3D shape dataset: A benchmark for 3D mesh segmentation (X. Chen et al (2009)). This dataset contains 19 classes with 20 samples per

These classes include: Human, Cup, Glasses, Airplane, Ant, Chair, Octopus, Table, Teddy bear, Hand, Plier,

• The experiment was implemented using MatLab R2018a Intel processor, CPU@3.6GHz and RAM 16GB.

			Table	e.1 Com	pariso	n with	the st	ate-of	-the-c	art stu	dies.		
	ich nd		Method							Classification score (%)			
high evel e 1.			M. Ankerst, et al (1999) (3D shape histogram)							43.42			
			R. Osada, et al (2002) Shape distribution							67.37			
IS	e	G.	G. E. da Silva and A. R. Backes (2018) Complex network							70.79			
	The proposed method								74.47				
	0	0	0	3	0	3	0	0	0	1	0	0	
	0	0	0	0	0	1	0	2	0	0	1	0	
	0	0	0	0	0	2	0	0	0	0	0	0	
	0	0	0	2	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	1	
	0	0	0	0	0	1	0	0	0	0	0	1	
	0	0	0	0	0	0	0	0	0	0	1	2	
	13	0	0	0	0	0	1	0	1	0	1	2	
	0	20	0	0	0	0	0	0	0	0	0	0	
	0	2	11	0	0	1	1	1	0	2	0	1	
	0	0	0	20	0	0	0	0	0	0	0	0	
	0	0	0	0	18	0	0	0	0	0	0	1	
	0	0	2	0	0	14	0	0	0	0	1	0	
	0	2	0	0	0	0	17	0	1	0	0	0	
	0	2	1	0	0	0	0	10	2	0	0	0	
	0	0	0	0	0	0	0	1	18	0	1	0	
	0	0	4	0	1	2	0	0	0	10	1	1	
	0	3	2	0	1	0	0	2	3	0	9	0	
	0	1	2	0	0	0	2	0	0	0	2	8	
	8	9	10	11	12	13	14	15	16	17	18	19	

Table 1 Comparison with the state-of-the-art studies.

Fig. 4 The confusion matrix of the proposed method .

Our approach includes a proposal of a new method for graph formulation with adaptive connectivity to represent 3D shapes preserving both local and global characteristics of the shape . • This is followed by a new set of graph spectral and node domain features based on the node distribution of

• The performance evaluation based on one of the most challenging 3D dataset showed that the proposed